Новости

5 мая, 2022 12:45

Новосибирские ученые выявили новые вещества с высокими магнитокалорическими показателями

Исследование магнитокалорических материалов — важный этап в разработке эффективной и экологически безопасной технологии криогенного магнитного охлаждения. Такая технология в будущем позволит разработать более дешевые и тихие холодильные установки. Сибирские ученые вместе с французскими коллегами обнаружили аномальные показатели веществ с высокими магнитокалорическими показателями. Статья об этом опубликована в журнале Chemistry of Materials.
Источник: Termoservice63

Идея магнитного охлаждения основана на использовании эффекта, который сейчас называется магнитокалорическим. Магнитокалорический эффект (МКЭ) — это процесс выделения или поглощения тепла веществом при изменении магнитного поля вокруг него. Те вещества, которые обладают значительным МКЭ, называются магнитокалорики. Принцип работы прост: ученые помещают вещество в магнитное поле, где оно начинает нагреваться. Затем убирают излишнюю теплоту и охлаждают, а когда выключают магнитное поле, то вещество охлаждается еще сильнее. По сути, происходит простой переход одной энергии в другую. 

Это нужно для того, чтобы достигнуть очень низких температур. Например, жидким гелием можно охладить вещество до 4 Кельвинов, а вот магнитным способом можно получить температуру, почти равную абсолютному нулю. Магнитокалорики наиболее эффективно работают в криогенной температуре, то есть менее 120 °К, что примерно равно -153 ℃. 

На сегодняшний день самыми перспективными магнитокалориками являются соединения гадолиния (Gd). Поэтому ученые Института неорганической химии им. А. В. Николаева работали с соединениями именно этого элемента. В своей работе сотрудники института кандидат химических наук Татьяна Александровна Помелова и доктор химических наук Николай Геннадьевич Наумов синтезировали сульфиды гадолиния и элементы первой группы: лития (Li), натрия (Na), калия (K), рубидия (Rb), цезия (Cs).

Сначала ученые полагали, что больший магнитокалорический эффект будет связан с сульфидом LiGdS2 из-за большего массового содержания в нем гадолиния. Однако исследование показало, что именно NaGdS2 показывает лучшие свойства среди исследуемых веществ. Благодаря тому, что это соединение наиболее сильно отвечает на изменение магнитного поля, оно вошло в пятерку наиболее эффективных соединений гадолиния, работающих в криогенных температурах. 

«Важным успехом этой работы, помимо получения этого вещества, стало то, что мы смогли показать, насколько сульфиды могут быть интересными с точки зрения магнитных свойств. Это открывает множество возможностей для исследования этого класса соединений», — рассказала Татьяна Помелова. 

Важным практическим приложением магнитокалориков является использование их в магнитных охладителях и магнитотепловых насосах. Также ведется поиск магнитокалориков, которые будут работать при комнатной температуре, чтобы попробовать заменить стандартные холодильники на компрессорах. Главное преимущество магнитных материалов в том, что они будут более экологичными, долгослужащими, эффективными и тихими. Помимо этого, важно, что применение магнитных материалов дешевле в сравнении с охлаждением жидким гелием. 

Несмотря на то, что в ближайшее время прикладное использование магнитокалориков невозможно, их исследование позволяет накопить фундаментальные знания о процессе магнитного охлаждения и позволит в будущем его использовать.

Работа выполнена в рамках гранта РНФ, №21-73-00240.
20 мая, 2024
Препарат для персонализированной терапии опухолевых заболеваний создали ученые ННГУ
Ученым ННГУ им. Н. И. Лобачевского удалось соединить внутри одного препарата несколько действующих...
20 мая, 2024
Соли уксусной кислоты упростят добычу тяжелой нефти
Ученые выяснили, что ацетаты — соли уксусной кислоты с переходными металлами — в комбинации с парово...