Новости

7 июня, 2018 23:00

Российские ученые смоделировали процесс синтеза биотоплива

Источник: Газета.ru
Российские ученые из Института химии Санкт-Петербургского государственного университета (СПбГУ) построили термодинамическую модель синтеза биотоплива для жидкой системы. Результаты исследования помогут создать более эффективные способы производства топлива из органического сырья и модифицировать известные еще с XIX века термодинамические правила. Статья опубликована в журнале Fluid Phase Equilibria. Работы поддержаны грантом Российского научного фонда (РНФ) в рамках Президентской программы исследовательских проектов.
Источник: Marta Page/Getty Images

В прогнозах по развитию альтернативных источников энергии биотопливу отводят одно из ключевых мест. Возможность перерабатывать органические отходы в спирты или биодизель очень привлекательна, но процесс производства и очистки биотоплива основан на сложных и не до конца изученных химических реакциях. Чтобы в будущем производство биотоплива было эффективным и безопасным, необходимо закрыть «белые пятна» — детально изучить химию и физику его синтеза.

В исследовании, проведенном на кафедре химической термодинамики и кинетики СПбГУ под руководством доцента Марии Тойкка, получение биотоплива изучалось на модельной системе из четырех жидких компонентов: уксусная кислота – амиловый спирт – амилацетат – вода. Основная задача исследования состояла в том, чтобы, во-первых, определить, из чего состоит каждый компонент системы в тот момент, когда они находятся в равновесии. Несмотря на то, что между компонентами существует четкая граница, температура и давление в них одинаковы и стабильны. А во-вторых, чтобы понять границы расслаивания смеси, необходимо было определить, как растворяются компоненты в этой системе.

Ученые наблюдали за модельной системой при температуре в 303,15 К (30 °С) и нормальном атмосферном давлении. Заданные условия поддерживались в специально сконструированной термостатируемой ячейке. В отличие от стандартных приборов для поддержания температуры, эта установка была изготовлена из прозрачного стекла в стеклодувной мастерской Института химии СПбГУ. Сквозь стекло исследователи отслеживали, как смесь расслаивается. При этом образовывалась вторая жидкая фаза, содержащая те же компоненты, но в других концентрациях.

Изменения в составе смеси фиксировали с помощью метода газовой хроматографии. Для этого пробу жидкости специальным шприцем вводили в испаритель хроматографа. Получившийся пар вместе с потоком инертного газа-носителя поступал в хроматографическую колонку – узкий сосуд с подобранным специально для анализируемой смеси поглощающим твердым веществом-сорбентом. Благодаря сорбенту пар разделялся на составляющие вещества, и отдельные компоненты «выходили» из колонки в разное время. На выходе детектор по теплопроводности фиксировал каждый компонент электрическим сигналом. Сигнал преобразовывался в пик на итоговой хроматограмме: чем выше концентрация вещества, тем сильнее сигнал, больше высота и площадь пика. По уровню пиков определялось количество «пойманных» веществ в пробе.

Фото: о достижении критического состояния свидетельствует, в частности, усиление рассеяния света в растворе, или опалесценция. На фотографии — голубая опалесценция смеси уксусной кислоты, амилового спирта, амилацетата и воды. Источник: Мария Тойкка.

Ученых интересовало, при каких концентрациях компонентов в смеси «уксусная кислота – амиловый спирт – амилацетат – вода» достигаются так называемые критические точки.

«Критические точки — это предельные точки на кривых растворимости. Когда состояние системы приближается к ним, фазовое равновесие нарушается, и система теряет термодинамическую устойчивость: увеличиваются сжимаемость вещества, то есть его способность менять объем, и рассеяние света, замедляются химические реакции. Важно знать, при каком составе система достигает критических точек, чтобы прогнозировать изменение ее характеристик», — поясняет руководитель работы Мария Тойкка.

Исследователи получили достаточно данных для термодинамической модели, которая предсказывает поведение системы «уксусная кислота – амиловый спирт – амилацетат – вода» при разных составах. Следующий этап работы — эксперименты со смесями из других компонентов. В конечном итоге обобщенные данные станут основой для новых способов получения биотоплива.

У работы есть и фундаментальное теоретическое значение. Современная термодинамическая теория растворов базируется на правилах, сформулированных еще классиками отечественной химии, например, на законах Коновалова и Вревского. Эксперименты с системами, моделирующими процессы производства биотоплива, дадут возможность модифицировать эти правила для случая химического равновесия и химически неравновесных систем. На своих лекциях Мария Тойкка уже знакомит студентов Института химии СПбГУ с уточненными моделями.

26 апреля, 2024
Создан алгоритм для безопасного разворачивания радиорефлекторов зондов
Российские исследователи разработали программный пакет, позволяющий максимально безопасным образом...
26 апреля, 2024
Открыто новое семейство белков
Сотрудники Института химической биологии и фундаментальной медицины СО РАН при исследовании хронич...