Новости

15 ноября, 2019 16:06

Определены оптимальные состав и форма напечатанного графенового датчика влажности

Источник: Газета.ru
Ученые из Новосибирска сравнили эффективность датчиков влажности на основе графена, напечатанных на твердой и гибкой подложках. С результатами исследования можно ознакомиться в журнале Materials. Исследования поддержаны грантом Президентской программы исследовательских проектов Российского научного фонда.

Картинка: образцы на полиэтилентерефталатной подложке. Источник: Надежда Небогатикова
Картинка: образцы, созданные из мультиграфеновой суспензии и нанесенные на бумагу. Для такого вида образцов исследуется зависимость электропроводности от приложенного механического напряжения. Источник: Надежда Небогатикова
Картинка: образцы на полиимидной подложке. Источник: Надежда Небогатикова
Картинка: принтер для струйной 2D-печати образцов. Источник: Надежда Небогатикова
3 / 4
Картинка: образцы на полиэтилентерефталатной подложке. Источник: Надежда Небогатикова
Картинка: образцы, созданные из мультиграфеновой суспензии и нанесенные на бумагу. Для такого вида образцов исследуется зависимость электропроводности от приложенного механического напряжения. Источник: Надежда Небогатикова
Картинка: образцы на полиимидной подложке. Источник: Надежда Небогатикова
Картинка: принтер для струйной 2D-печати образцов. Источник: Надежда Небогатикова

Анализаторы влажности широко используются в электроприборах для медицинской диагностики, охраны окружающей среды, промышленности и сельского хозяйства. Одним из перспективных путей создания дешевых и чувствительных сенсоров влажности может стать печатная электроника. При печати структур важны не только состав и толщина будущего детектора, но и характеристики несущей его основы.

Один из подходов к усилению чувствительности графеновых датчиков — использование органических электропроводящих полимеров, при этом создаются новые композитные материалы со свойствами, которых не было у исходных веществ. Например, PEDOT: PSS [поли(3,4-этилендиокситиофен) в смеси с полистиролсульфонатом] обладает крайне высокой чувствительностью к изменению влажности, но при содержании воды в воздухе более 80% его работоспособность снижается. Скорее всего, так происходит из-за того, что полимер насыщается водой, его сопротивление снижается и датчик надолго выходит из строя. Чтобы обойти подобное ограничение, PEDOT: PSS используют в сочетании с поливиниловым спиртом, наночастицами оксидов железа, цинка и олова. Эти добавки позволяют использовать датчики при уровне влажности вплоть до 100%. Важнейшими задачами на пути совершенствования датчиков влажности можно назвать определение оптимального состава пленки, обеспечивающего максимальную чувствительность, и исследование того, как зависят свойства сенсоров от их формы и материала подложки.

Для ответа на эти вопросы новосибирские физики сравнили чувствительность датчиков с различными пропорциями графена и PEDOT: PSS и выяснили, что наибольший отклик на влагу дают напечатанные пленки с соотношением этих материалов в диапазоне 1:1–1:2. Другой важной частью работы было сравнение эффективности датчиков, напечатанных на гибких подложках из бумаги, полиимидной пленки, полиэтилентерефталата (ПЭТ) и на жесткой кремниевой подложке. Оказалось, что самым чувствительным получился датчик, напечатанный на подложке из бумаги с дополнительным гидрофильным клеевым слоем на поверхности. По-видимому, это связано с тем, что напечатанные образцы оказались наиболее пористыми. Сама по себе бумага служит отличной подложкой, но возможно, что в будущем потребуется увеличить ее механическую прочность.

Форма датчика также влияет на его чувствительность и способность работать в изогнутом состоянии. Ведь сенсоры в носимой электронике, к примеру наручных часах, будут находиться в постоянном напряжении из-за сгиба, и их показания могут быть неверны. Ученые выяснили, что идеальный датчик, который не боится механических воздействий, должен иметь форму змейки. Это объясняется тем, что он изначально имеет большую площадь контакта с поверхностью и в нем уже есть свои механические напряжения. В итоге при сгибании или растягивании ситуация для него не сильно изменяется, и он почти не меняет свои свойства. Он словно заранее прошел череду испытаний на прочность. А вот сенсору в форме простой полоски нужно время, чтобы привыкнуть и адаптироваться к внешнему давлению. Поэтому результаты тестов на сгиб хуже у прямых сенсоров.

«Наше исследование играет важную роль в разработке и создании материалов и структур на основе графена для будущей печатной гибкой электроники, а также в конструировании нанопленок и слоев на основе наноструктурированного графена», — подводит итог Надежда Небогатикова, кандидат физико-математических наук, научный сотрудник Института физики полупроводников имени А. В. Ржанова Сибирского отделения РАН, старший преподаватель Новосибирского государственного университета.


28 марта, 2024
Ученые ИТМО создали более долговечные синие перовскитные светодиоды
Ученые ИТМО нашли новый способ получения синего излучения у перовскитных нанокристаллов. Он позвол...
28 марта, 2024
Ученые научились управлять мощностью электронного пучка в течение его импульса
В Институте сильноточной электроники СО РАН модернизирована уникальная научная электронно-пучковая...