INFORMATION ABOUT PROJECT,
SUPPORTED BY RUSSIAN SCIENCE FOUNDATION

The information is prepared on the basis of data from the information-analytical system RSF, informative part is represented in the author's edition. All rights belong to the authors, the use or reprinting of materials is permitted only with the prior consent of the authors.

 

COMMON PART


Project Number22-17-00078

Project titleRare metal (REE-Y-Nb-Zr) mineralization of West Transbaikalia: types and concentration mechanisms

Project LeadStarikova Anastasiya

AffiliationNovosibirsk State University,

Implementation period 2022 - 2024 

Research area 07 - EARTH SCIENCES, 07-113 - Geology and genesis of ore deposits

KeywordsRare earth elements and yttrium, niobium, zirconium, minerals-concentrators, concentration mechanisms, alkaline granites, alkaline syenites, nepheline syenites, carbonatites, age, sources of matter


 

PROJECT CONTENT


Annotation
Rare elements are incompatible in most magmatic systems and are concentrated in accessories. Melts enriched in these elements are formed either by low degree of partial melting or during extreme fractionation. The products of such melts include carbonatites, alkaline syenites, nepheline syenites, alkaline granites and pegmatites. The largest deposits of rare-earth elements, yttrium and niobium: Bayan-Obo, Lovozero, Tomtor, Katuga, Strange Lake and others are associated with these types of rocks. However, the mechanisms that led to the formation of industrial concentrations of rare elements are often not only crystallization differentiation and liquation of the melts, but include pneumatolytic-hydrothermal, metasomatic and hydrothermal processes. The project is aimed to studying of concentration mechanisms, distribution and redistribution of rare elements in carbonatites, alkaline granites and alkaline syenites in the Western Transbaikalia. The first promising type of rare-metal mineralization includes carbonatites of Transbaikalia (the Khalyuta group, Arshan, Yuzhnoe, Ulan-Udenskoe). The mineralization of them is mainly represented by LREE, like most of the known carbonatite deposits in the world (e.g. the Mountain Pass, USA; the Bayan-Obo, China). The second group includes a number of rare metal (Nb, Ta, Zr, HREE+Y) occurrences associated with alkaline granites, alkaline and nepheline syenites (the Burpala, the Ingur, and the Irbo massifs). The study involves the solution of the following main tasks: (1) dating (U-Pb LA ICP-MS, SHRIMP II, Ar-Ar), geochemical and isotopic-geochemical (Sm-Nd, Lu-Hf, O) characteristics of the melts and fluids sources of rare metal-bearing alkaline complexes; (2) assessment of the physical and chemical conditions of melts and fluids generation, their composition and mineralization; (3) construction of petrogenetic models of the evolution of melts and fluid regime in the studied complexes, developing of the concentration mechanisms, distribution and redistribution of ore components; (4) verification of the results with previously studied rare metal-bearing objects (the Katuga alkaline granites, the Tuva Late Mesozoic carbonatite complexes and the Uligly alkaline syenites and other objects within the study region). The planned studies will allow to determine the petrogenetic factors that led to the concentration of rare elements in carbonatites, alkaline granites and alkaline syenites; to estimate the relationship and importance of magmatic, metasomatic and hydrothermal processes during the concentration, distribution and redistribution of rare elements. The scientific and practical significance of the project lies in the development of geological forecast criteria for the search of perspective ore objects with rare-metal mineralization connected with alkaline complexes in Russia. The petrogenetic factors obtained during the project will be important in estimation of the technological properties of ores, which, in turn, can be used in the development of schemes for the ore components extraction.

Expected results
It is planned to obtain the following main results: Mineralogical, petrographic and geochemical characteristics of alkaline igneous rocks and ores of the planned objects, to determine the main and minor minerals-concentrators of rare elements. To determine the age of alkaline igneous rocks and ores of the studied objects, similarity or discreteness of magmatic and ore-forming processes. To characterize the sources of igneous rocks and fluids which led to the formation of different types of rare-metal mineralization, to assess their geochemical specialization and to determine the degree of mantle-crustal interaction, based on petrologo-geochemical, Sm-Nd, Lu-Hf and O isotopic investigations and the rare-element composition of zircon from alkaline igneous rocks and ores. To obtain data on the composition and evolution of the melts and fluids, redox potentials and PT-parameters of fluids that formed minerals in alkaline igneous rocks and ores of the studied objects. To determine the mechanisms of transfer and accumulation of rare metals and rare earth elements during various processes. To assess the role of various processes (crystallization differentiation, immiscibility, hydrothermal and metasomatic processes) responsible for the accumulation and distribution of rare elements. To construct petrogenetic models of the evolution of the melts and fluid regimes for all objects; to substantiate the petrogenetic factors of the formation of different rare-metal mineralization in the Western Transbaikalia, taking into account the verification with the previously studied objects (the Katugino alkaline granites, the Tuva Late Mesozoic carbonatite complexes, the Uligly syenites and other objects within the study region). In the course of the project, it is planned to train students and graduate students in modern methods of mineralogy, petrology and geochemistry, research of melt and fluid inclusions, using the most modern instruments for local microanalysis of natural samples. Young participants will have the opportunity to work in leading analytical laboratories (in the Analytical Center of the Institute of Geology and Mineralogy SB RAS (Novosibirsk), the Center for Shared Use "Geoanalyst" IGG UB RAS (Ekaterinburg), the Center for Shared Use «Geodynamics and geochronology» Institute of the Earth Crust SB RAS (Irkutsk)). The compliance of the results with the world level of scientific research will be guaranteed by publications at the main thematic international conferences and in leading high-ranking journals. The scientific results of the project will be used to develop petrogenetic factors of ore mineralization of carbonatite, alkaline-granite and alkaline-syenite intrusions. In practical terms, the obtained results can be used to search perspective ore objects, to identify industrial rare metal mineralization, as well as to assess the technological properties of ores, which must be taken into account when developing schemes for the extraction of ore components.


 

REPORTS


Annotation of the results obtained in 2022
Studies (Raman, thermometry, SEM-EPMA and LA-ICP MS) of melt and fluid inclusions in carbonatite minerals and associated alkaline igneous rocks of the Khalyuta, Arshan, Yuzhnoe and Ulan-Ude (Port) complexes have been carried out. According to the results of the study of silicate-salt inclusions in the minerals of the shonkinite of the Khalyuta complex, it was found that carbonatites were formed as a result of silicate-salt immiscibility at temperatures above 780-800 °C. Fluid brine-melts of carbonatites of Western Transbaikalia have an alkaline-fluorine-carbonate-sulfate composition with a high Na/K ratio and a crystallization temperature above 650 °C. The fluids are ore-bearing: Ba (300-600 ppm), Sr (1-3 wt. %) and LREE – La-Ca-Nd (up to 4-5% wt.%). The study of primary-secondary crystal-fluid inclusions in carbonatite minerals of the Yuzhnoe, Arshan and Ulan-Ude complexes allowed us to reconstruct the evolution of ore–bearing orthomagmatic carbonatite fluids at the hydrothermal stage: 450-400 °C carbonate-sulfate solution → 350-290 °C chloride solution (dilution with meteoric waters) → >200-150 °C hydroxycarbonate -sulfate solution. Hydrothermal solutions were responsible for the late ore F-Ba-Sr-REE mineralization of carbonatites. The age (U-Pb LA ICP MS) and Nd isotopic characteristics of bastnaesite from bastnaesite-fluorite rocks of the Yuzhnoe and Ulan-Ude carbonatite complexes were determined. Data on the age of bastnaesite of the Ulan-Ude bastnaesite-fluorite rocks (136.6±1.9 million years) coincide with the age of the carbonatite formation (134.2±2.6 million years (Ripp et al., 2018)). Age of bastnaesite of the Yuzhnoe carbonatite (130.2±1.1 million years) turned out to be slightly older than the age of carbonatites (Rb-Sr 122±4 million years (Ripp et al., 2009)) and coincides with the age of alkaline syenite (130±5 million years (Ripp et al., 2009)). In general, the obtained data on the ages of bastnaesites overlap with the age estimates determined for the alkali-carbonatite complexes of Western Transbaikalia. The obtained negative values of ɛND (T) for bastnaesite and rocks (-4.28 to -2.67 and -2.94 to -3.83, respectively) show that they have isotopic compositions depleted by radiogenic Nd and may be melting products of the enriched mantle. Mineralogical and petrographic studies of igneous rocks of the Burpala massif have shown that the massif is composed of moderately alkaline rocks of intermediate composition and alkaline rocks of intermediate and felsic composition. The moderately alkaline intermediate rocks include syenites and quartz syenites, among which there are fine-grained syenites with zirconium mineralization (up to 3 vol. %). Alkaline rocks of medium and felsic composition are represented by alkaline, nepheline, sodalite syenites and alkaline granites. They contain Zr and Ta-Nb mineralization. The first data on the mineral composition of 1, 2, and 5 ore zones of the Burpala massif showed that the main rock-forming minerals are albite, K-Na feldspar and aegirine. The main REE mineral of these zones is loparite, which tends to feldspar-aegirine aggregates, chevkinite and apatite are also common. In their composition, the cerium group dominates among the REES. In the 3rd ore zone, apatite-fluorite rocks predominate, among which magnetite-apatite-fluorite rocks without rare-metal mineralization and apatite-feldspar-fluorite rocks, significantly enriched in light rare-earth elements and strontium (britolite, bastnaesite, synchizite), but poor in Zr and Nb, can be distinguished. The obtained mineralogical and petrographic data of alkaline biotite-arfvedsonite granite and pegmatite bodies of the Ingur massif showed that the rare-metal mineralization of granite is mainly represented by zircon, bastnaesite-(Ce), monazite and xenotime, which are associated with biotite and arfvedsonite. Pegmatites of the Ingur massif have high concentrations of Nb, Zr, Th, U. The main ore minerals of pegmatites are hydrated uranium pyrochlore, fergusonite and zircon. The first mineralogical and petrographic data on albitized granite of the Irbo massif allowed us to establish variations of rock-forming minerals (albite, potassium feldspar and quartz) associated with late/post-magmatic changes. In albitized granites, the enrichment of Ta, Nb, REE and Y is noted, the concentrators of which are pyrochlore, allanite, chevkinite, talenite, yttrialite, yttrobritolite, fergusonite, fersmith, apatite, xenotite, monazite, britolite. In unchanged gneiss-like granite, Irbo tantalum-niobium mineralization has not been found. Studies of zircon from alkaline granites, ore segregations and cryolite rocks of the Katugin complex (CL, WDS, Raman, LA-ICP-MS) revealed 3 types of zircons: magmatic, diagnosed in the cores of zircon of all types of rocks, except cryolite rocks; heterogeneous metasomatic with wide variations of impurity components (including P2O5 up to 0.49 wt.%, HREE2O3 up to 1.86 wt.% and Y2O3 up to 0.88 wt.%), replacing magmatic zircon; homogeneous hydrothermal, composing the zircon rims and having minimal content of impurity components. In the primary crystal-fluid inclusions of metasomatic zircon, the dominance of high-density carbon dioxide (0.65-0.69 g/cm3) in the fluid and a significant variety of crystalline phases are noted. REE minerals: gagarinite-(Y), bastnaesite-(Ce, Nd), tveitite-(Y), yttrofluorite are typical crystalline phases of inclusions. U-Pb LA ICP-MS studies of zircons from alkaline granites showed that magmatic (2064.3 +-5.1 Ma) and metasomatic (1900 ± 6 Ma) zircons were formed at different stages. This fact allows us to assume the possibility of several different geodynamic environment for the formation of the Katugin deposit mineralization: 1) crystallization of high-fluorine alkaline granites of the Katugin complex, preceding accretion of the Katugin block into the Siberian craton; 2) activation of fluids that led to the redistribution of REE mineralization within the massif, probably associated with collision processes 2.00-1.90 billion years ago that occurred during the assembly of the Siberian craton (Donskaya, 2020). The age (U-Pb LA ICP MS zircon) of the formation and transformation of alkaline syenites of the Borgoi and Botsin massifs of Western Transbaikalia was determined. It is established that the time of their crystallization (246 ±3 and 243+2.5 Ma) coincides with the Permian-Triassic stage of formation of alkaline igneous rocks common in Western Transbaikalia, while the processes of albitization (121±1.0 million years), with which ore REE mineralization is associated, are significantly separated in time from the magmatic event and are probably related to rifting processes.

 

Publications

1. Izbrodin I.A., Doroshkevich A.G., Khubanov V.B., Khromova E.A. Состав, возраст и геодинамическая позиция щелочных пород Боргойского и Боцинского массивов (Джидинская щелочная провинция) Геодинимика и тектонофизика, - (year - 2023)

2. Rampilova M.V., Rampilov M.O., Izbrodin I.A. ОСОБЕННОСТИ ВЕЩЕСТВЕННОГО СОСТАВА И ВОЗРАСТ ЩЕЛОЧНЫХ ГРАНИТОВ ИНГУРСКОГО МАССИВА, ЗАПАДНОЕ ЗАБАЙКАЛЬЕ Геодинамика и тектонофизика, 13(4) (year - 2022) https://doi.org/10.5800/GT-2022-13-4-0647

3. Doroshkevich A.G., Redina A.A., Izbrodin I.A., Ripp G.S. ВОЗРАСТ И ИСТОЧНИКИ ВЕЩЕСТВА БАСТНЕЗИТ-ФЛЮОРИТОВЫХ ПОРОД УЛАН-УДЭНСКОГО И ЮЖНОГО ПРОЯВЛЕНИЙ (ЗАПАДНОЕ ЗАБАЙКАЛЬЕ) Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научной конференции, 18–21 октября 2022 г., ИЗК СО РАН, г. Иркутск, 20 выпуск, с. 95-96 (year - 2022)

4. Prokopyev I.R. РАСПЛАВЫ И ФЛЮИДЫ ЩЕЛОЧНО-КАРБОНАТИТОВЫХ КОМПЛЕКСОВ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА (ЗАБАЙКАЛЬЕ, ТУВА) Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научной конференции, 18–21 октября 2022 г., ИЗК СО РАН, г. Иркутск, 20 выпуск, c. 233-234 (year - 2022)


Annotation of the results obtained in 2023
The compositional characteristics (WDS, ICP-MS LA) of clinopyroxene, mica, fluorite and apatite of the Burpala massif were determined. The evolution of the macrocomponent composition of mica and pyroxene within the nepheline and alkaline syenite groups is similar, while the minerals of the quartz syenite group are characterised by higher Mg#. The concentrations of REE, Zr, Sr and Ti in pyroxene vary within each group as the aegirine-hedenbergite minal increases. It is shown that minerals from quartz-normative rocks are strongly depleted in Zr, Ti and Sr, enriched in Mg and do not follow a trend characteristic of massif evolution. For apatite and fluorite, an increase in Sr is observed in the sequence alkaline syenite → nepheline syenite → apatite-fluorite rocks → ore alkaline and nepheline syenites. Similar apatite and fluorite compositions for different groups of igneous rocks indicate a uniform mechanism for their formation and allow us to consider apatite-fluorite rocks as a product of differentiation of alkaline melts responsible for the formation of the Burpala massif. The composition of fluorite and apatite from the phenitisation zone suggests a hydrothermal-metasomatic mechanism of their formation. Mineral-concentrators of rare metal elements of ore zones 1, 2, 5 were found and described, the main among which are loparite, melanocerite, zircon, bastnesite. Th-concentrator phases were revealed: thorite, U-thorianite, various metamict phases (1 - 20 wt % ThO2), high-Th zircon (up to 7.69 wt %ThO2). Minerals of hydroxylcalciopyrochlore-oxyuranobetaphite composition (UO2 up to 23.8 wt.%) and their alteration products were found only in the phenitisation zone. The U-Pb ages (zircon, ICP-MS LA) from the main igneous rocks of the Burpala massif (300-289 Ma) coincide with the ages of nepheline syenite of the Synnyr pluton and some alkaline complexes of the Vitimsky segment of Transbaikalia, the formation of which is attributed to the effect of the plume. The U-Pb age of albitised granites 619.4±6.9 Ma of Irbo is comparable with the formation (640-585 Ma) of pyroxenite-gabbro-granite intrusive and metamorphic complexes, acid volcanics and carbonatites of the Baikal-Muisky belt, the formation of which during this period was associated with the accretion-collisional stage (Doroshkevich et al., 2007, a, b; Konnikov et al., 1999, etc.). The U-Pb age of Ingur alkaline granites (272 Ma) corresponds to the final stage of large-scale granite formation in the Transbaikalia (Tsygankov et al., 2010; Litvinovsky et al., 2011). Comprehensive studies (Raman, thermometry, SEM-EPMA) of primary and secondary inclusions in fluorite from the Burpala massif were carried out. It was found that high-temperature (595-620°C) alkaline SO4-PO4-CO2-Cl-F fluid/melt enriched in Sr were involved in the formation of apatite-fluorite rocks. When the temperature was lowered (to 187°C), the ability of the solutions to transport Sr was preserved. The fluids involved in the formation of the fenites are also characterised by Sr ore specialization and even higher alkali activity. Trace element composition of zircons (both core and rim) from ore and non-ore nepheline syenites of the Burpala massif shows similar characteristics: LREE depletion, significant Ce and weak Eu anomalies, with higher REE and rare-metal element contents for the ore rocks. This confirmed the link between ore processing and magmatic rather than metasomatic processes in the central parts of the massif. Zircons from metasomatites of the fenitisation zone (the outer part of the massif) are close to the hydrothermal zircon fields in REE composition, which is consistent with their complicated internal structure, flat REE spectra, and numerous crystalline inclusions. The zircons from the albitised Irbo granites have a hydrothermal-metasomatic genesis and co-growth with allanite based on textural features and trace element composition. This resulted in significant REE fractionation during growth. The zircons of the Ingur massif have magmatic genesis. Their REE spectra are similar to those of magmatic zircons from rare-metal granites of the Katugin complex and other granitoids (our data, Belousova et al., 2002). Crystallisation of the central parts of zircons with lower LREE contents and Ce* could occur together with monazite, and the formation of marginal parts with minimal REE - after crystallisation of monazite and mafic minerals. Petrological, geochemical and superplanar oxygen isotope data show that quartz and alkaline syenites, on the one hand, and nepheline syenites, on the other hand, were formed by independent pulses of intrusion with fractionation within each pulse. The rocks were crystallised from a melt of alkaline-basic composition after precipitation of olivine and plagioclase. The formation of quartz syenites is probably due to contamination and mixing with crustal melt in the roof zone. The ongoing flow of alkaline, silica undersaturated melt from the chamber then led to the crystallisation of nepheline syenites. The high values of Rb, Ba and Pb and negative Ti-Nb-Ta anomalies can be attributed to the fact that during the Neoproterozoic and Palaeozoic the region was almost continuously located in the area of convergence of the Siberian craton with the lithosphere of the Palaeoasian ocean. As a result, the lithospheric mantle of the region was significantly reworked by supra-subduction processes and acquired such geochemical features. The rocks of the Ingur and Irbo massifs on the TAS diagram lie in the field of alkaline leucogranites and rarely granites. Alkalinity increases with decreasing SiO2, K/Na 1.2-1.3. Fe* 0.90-0.97, which is characteristic of A-type granites. Agpaitity of rocks varies from 0.9 to 0.95. REE spectra are characterized by a slight predominance of LREE over HREE and a deep negative Eu anomaly. Distribution graphs of incompatible elements are characterised by negative Ba, Sr, Eu, Ti anomalies. The rocks are enriched in Nb, Ta, Zr, Hf and Y. By their geochemical characteristics, the rocks of the massif are similar to A-type granites formed in intraplate conditions and are similar to alkaline granitoids of the rannekyleysky complex, the age of which is estimated within 280-273 Ma (Reichow et al., 2010; Tsygankov et al., 2010). New data on the composition and metal content in the fluids involved in their formation were obtained based on the results of the inclusion study in carbonatites of the Western Transbaikalia. The main ore (F-Ba-Sr-REE) mineral associations were formed from alkaline (K>Na) carbonic acid-chloride-carbonate-fluoride-sulfate brine-melts (T 560-440°C, P 440-310 MPa). The next stages of mineral formation of Transbaikalia carbonatites are associated with concentrated fluids of sulfate-carbonate-chloride and hydrocarbonate-chloride compositions, with homogenisation temperatures from 400-370 °C to 250-135 °C and P > 250 MPa. Verification of the obtained results on the fluid regime of carbonatite formation in the Western Transbaikalia with similar ore-bearing carbonatite complexes of the Central Asian fold belt showed that ore-bearing brine-melts of carbonatites of the Ulan-Ude occurrence are significantly enriched in LREE compared to carbonatites of the Central Asian fold belt. On the other hand, higher Ca contents in brine/melt inclusions are more typical for calcite carbonatites of Tuva and Transbaikalia, and fluorite-bearing rocks of the Mushugai-Khuduk complex. Iron ores are represented by magnetite-apatite rocks of Southern Mongolia and siderite carbonatites of Central Tuva. LREE contents are uniformly distributed in brine-melt inclusions of carbonatites of the Central Asian province, but a slightly higher amount of Ce is characteristic of carbonatite ores of the Ulan-Ude and Karasug occurrences.

 

Publications

1. Isakova A.T., Starikova A.E., Izbrodin I.A., Doroshkevich A.G. Фазовый состав первичных кристаллофлюидных включений из апатит-флюоритовых пород Бурпалинского массива Щелочной и кимберлитовый магматизм Земли и связанные с ним месторождения стратегических металлов и алмазов: сборник статей, 11-15 сентября 2023 г., Научная конференция, КНЦ РАН, Апатиты, с.183-186 (year - 2023) https://doi.org/10.37614/978-5-91137-500-3.035

2. Izbrodin I.A., Doroshkevich A.G., Malyutina A.V., Semenova D.V., Radomskaya T.A., Kruk M.N., Prokopyev I.R., Starikova A.E., Rampilov M.O. Геохронология пород щелочного массива Бурпала (Северное Прибайкалье): новые U-Pb данные Геодинамика и тектонофизика, №1, Т.15 (year - 2024)

3. Izbrodin I.A., Doroshkevich A.G., Moroz T.N., Starikova A.E., Malyutina A.V. Высокоториевый циркон из рудной зоны № 2 массива Бурпала, Северное Прибайкалье Щелочной и кимберлитовый магматизм Земли и связанные с ним месторождения стратегических металлов и алмазов: сборник статей, 11-15 сентября 2023 г., Научная конференция, КНЦ РАН, Апатиты, с.173-178 (year - 2023) https://doi.org/10.37614/978-5-91137-500-3.033

4. Malyutina A.V., Doroshkevich A.G., Izbrodin I.A., Starikova A.E., Kruk M.N. Особенности состава породообразующих минералов щелочного редкометалльного массива Бурпала (Северное Прибайкалье) Щелочной и кимберлитовый магматизм Земли и связанные с ним месторождения стратегических металлов и алмазов: сборник статей, 11-15 сентября 2023 г., Научная конференция, КНЦ РАН, Апатиты, с.260-264 (year - 2023) https://doi.org/10.37614/978-5-91137-500-3.052

5. Prokopyev I.R., Doroshkevich A.G., Redina A.A. Brine–Melts and Fluids of the Fe-F-P-(Ba)-(Sr)-REE Central Asian Carbonatite Province (Southern Siberia and Mongolia): The Petrogenetic Aspects Minerals, 13(4), 573 (year - 2023) https://doi.org/10.3390/min13040573

6. Redina A.A., Doroshkevich A.G., Prokopyev I.R., Izbrodin I.A., Yang Y. Возраст и источники РЗЭ-флюоритовых проявлений Южное и Улан-Удэнское, связанных с карбонатитовым магматизмом (Западное Забайкалье, Россия) Геодинамика и тектонофизика, - (year - 2024)

7. Starikova A.E., Izbrodin I.A., Doroshkevich A.G., Isakova A.T., Malyutina A.V. Состав апатита и флюорита из пород щелочного массива Бурпала, Северное Прибайкалье Щелочной и кимберлитовый магматизм Земли и связанные с ним месторождения стратегических металлов и алмазов: сборник статей, 11-15 сентября 2023 г., Научная конференция, КНЦ РАН, Апатиты, c. 384-388 (year - 2023) https://doi.org/10.37614/978-5-91137-500-3.078

8. Doroshkevich A.G., Izbrodin I.A., Radomskaya T.A., Rampilov M.O., Prokopyev I.R., Malyutina A.V., Kruk M.N. Петролого-геохимическая характеристика щелочных пород редкометального массива Бурпала, Северное Прибайкалье Геодинамика и минерагения Северной Евразии: материалы VI Международной научной конференции, посвященной 50-летию Геологического института им. Н.Л. Добрецова СО РАН, 13–17 марта 2023 г., ГИН СО РАН, Улан-Удэ., с. 214-217 (year - 2023)

9. Doroshkevich A.G., Maluytina А.V., Izbrodin I.А., I.R., Prokopyev, Kruk M.N., Starikova A.E., Radomskaya Т.А., Rampilov М.О. Петрогенезис пород щелочного редкометалльного комплекса Бурпала, Северное Прибайкалье Геологические процессы в обстановках субдукции, коллизии и скольжения литосферных плит: материалы конференции, 19-22 сентября 2023 г., VI Всероссийская конференция с международным участием, ДВГИ ДВО РАН, Владивосток, с.231-234 (year - 2023)

10. Izbrodin I.A., Doroshkevich A.G., Malyutina A.V., Kruk M.N., Starikova A.E., Prokopyev I.R., Rampilov M.O. REE-Nb-Zr- минерализация рудных зон № 1, 2 Бурпалинского массива (Северное Прибайкалье) Геодинамика и минерагения Северной Евразии: материалы VI Международной научной конференции, посвященной 50-летию Геологического института им. Н.Л. Добрецова СО РАН, 13–17 марта 2023 г., ГИН СО РАН, Улан-Удэ., с.258-260 (year - 2023)

11. Izbrodin I.A., Doroshkevich A.G., Malyutina A.V., Semenova D.V., Radomskaya T.A., Kruk M.N., Prokopyev I.R., Starikova A.E., Rampilov M.O. U-Pb геохронология пород щелочного массива Бурпала (Северное Прибайкалье) Геологические процессы в обстановках субдукции, коллизии и скольжения литосферных плит: материалы конференции, 19-22 сентября 2023 г., VI Всероссийская конференция с международным участием, ДВГИ ДВО РАН, Владивосток, с.244-247 (year - 2023)

12. Malyutina A.V., Doroshkevich A.G., Izbrodin I.A., Starikova A.E., Kruk M.N. Особенности состава породообразующих минералов щелочного редкометального массива Бурпала (Северное Прибайкалье) Геодинамика и минерагения Северной Евразии: материалы VI Международной научной конференции, посвященной 50-летию Геологического института им. Н.Л. Добрецова СО РАН, 13–17 марта 2023 г., ГИН СО РАН, Улан-Удэ., с.349-352 (year - 2023)

13. Rampilov M.O., Rampilova M., Izbrodin I.A. ОСОБЕННОСТИ ВЕЩЕСТВЕННОГО СОСТАВА ЩЕЛОЧНЫХ ГРАНИТОВ И ПЕГМАТИТОВ ИНГУРСКОГО МАССИВА, ЗАПАДНОЕ ЗАБАЙКАЛЬЕ Проблемы геологии и освоения недр: труды XXVII Международного молодежного научного симпозиума имени академика М.А. Усова, г. Томск, Т.1, с.71-72 (year - 2023)

14. Starikova A.E., Sklyarov E.V. Этапы становления Катугинского комплексного (Nb-Ta-REE-Zr-криолит) месторождения (Забайкальский край, Россия) по данным изучения циркона Геодинамика и минерагения Северной Евразии: материалы VI Международной научной конференции, посвященной 50-летию Геологического института им. Н.Л. Добрецова СО РАН, 13–17 марта 2023 г., ГИН СО РАН, Улан-Удэ., с. 494-496 (year - 2023)