Новости

2 ноября, 2018 15:29

Физики предложили антенну для разработки сверхчувствительных датчиков магнитного поля нового поколения

Ученые из Университета ИТМО совместно с коллегами из Физического института имени П. Н. Лебедева РАН предложили новую микроволновую антенну, которая создает однородное магнитное поле в большом объеме и позволяет синхронизировать электронные спины группы дефектов в структуре наноалмаза. Это можно использовать при создании сверхчувствительных магнитных сенсоров нового поколения для применения в магнитоэнцефалографии при изучении и диагностики эпилепсии и других заболеваний. Результаты опубликованы в журнале JETP Letters.
Источник: Университет ИТМО

Изучение характеристик магнитного поля необходимо во многих отраслях: от навигации до медицины. Например, магнитоэнцефалография позволяет зарегистрировать магнитные поля, возникающие при работе мозга, а также измерить активность отдельных нейронов. Этот метод используется при диагностике ряда заболеваний, включая эпилепсию и болезнь Альцгеймера, или при подготовке к операциям на головном мозге. Однако для магнитоэнцефалографии нужны сверхчувствительные магнитометры – приборы, которые фиксируют характеристики даже очень слабых магнитных полей.

Ученые постоянно ищут новые способы создания сверхчувствительных магнитометров нового поколения. Такие устройства должны работать при комнатной температуре, малых входных мощностях, быть компактными и обладать низкой стоимостью. Одним из перспективных вариантов является использование дефектов в наноалмазах. Наноалмазы – это углеродные наноструктуры с высоким показателем преломления и высокой теплопроводностью, которые почти не взаимодействуют с другими веществами и могут содержать сложные дефекты внутренней структуры. Например, NV-центры или центры азот-вакансия.

«Такие дефекты создают искусственно: при удалении атома углерода из кристаллической решетки алмаза, образовавшаяся вакансия связывается с внедренным атомом азота. Уникальность структуры дефекта заключается в том, что электронные спины индивидуального центра манипулируются электромагнитным полями. В зависимости от свойств окружающего микроволнового магнитного поля состояние электронного спина NV-центра меняется, и это можно считывать оптическими методами», – объясняет Дмитрий Зуев, научный сотрудник физико-технического факультета Университета ИТМО.

Тем не менее, отклик одного NV-центра недостаточно силен, поэтому для улучшения чувствительности сенсоров нужно использовать целые группы таких дефектов. При этом возникает проблема: реакцию электронных спинов всех центров в объеме наноалмаза необходимо когерентно синхронизировать. Иными словами, все они должны находиться в микроволновом магнитном поле одинаковой интенсивности, чтобы их отклик был одинаковым.


Фото: Антенна для наноалмаза. Источник: пресс-служба ИТМО

Ученые из Университета ИТМО совместно с коллегами из Физического института имени П. Н. Лебедева РАН  предложили использовать диэлектрическую микроволновую антенну для одновременного управления электронными спинами NV-центров в большом объеме наноалмаза. Антенна представляет собой диэлектрический цилиндр с внутренним отверстием, возбуждаемый электрическим током. В центр отверстия антенны помещают наноалмаз со множеством NV-центров. При подаче входной мощности порядка 5 Вт, диэлектрический цилиндр создает сильное однородное магнитное поле вокруг наноалмаза. За счет этого электронные спины всех NV-центров синхронизируются одинаково и тем самым обеспечивают высокую чувствительность магнитометров.

«Главным вызовом этой работы было добиться когерентного управления электронными спинами NV-центров во всем объеме коммерчески-доступного образца наноалмаза. Мы предложили использовать для этого антенну на основе диэлектрического резонатора, рассчитали нужные параметры антенны и оценили ожидаемый эффект. Экспериментальные исследования были проведены совместно с научной группой профессора А. В. Акимова в Москве. Мы собрали экспериментальный образец и измерили частоту Раби, которая показывает, с какой периодичностью происходит “переворот” спина. Чем больше эта величина, тем лучше. Мы получили частоту Раби в 10 мегагерц. Такого значения в объемном образце никто еще не показывал экспериментально, это прорывной результат», – отмечает Полина Капитанова, научный сотрудник физико-технического факультета Университета ИТМО.

Измерение частоты Раби – первый шаг на пути к определению чувствительности нового датчика. В планах ученых продолжить эксперименты и теоретические исследования по поиску новых конфигураций антенны, которые обеспечат еще более высокое качество магнитометров.

Работы были выполнены в рамках гранта РНФ № 16-19-10367.

17 января, 2025
Российские ученые раскрыли свойства циркония при экстремальных температурах
Исследователи из МФТИ и Объединенного института высоких температур РАН провели масштабное исследов...
17 января, 2025
Резидент Сколково разработал технологию выделения изотопа углерода для создания «вечных» батарей
Компания «ИнноПлазмаТех», резидент Сколково (Группа ВЭБ.РФ), подтвердила эффективность ионно-...