Ионные двигатели — одни из самых перспективных и широко используемых устройств в космосе. Сейчас их в основном применяют для коррекции положения и поддержания рабочей орбиты геостационарных спутников.
Ученые из МАИ исследуют возможность увеличения эффективности работы высокочастотного ионного двигателя за счет изменения геометрии его элементов. Такие устройства работают за счет разгона ионов рабочего газа электрическим полем: поток ускоренных заряженных частиц вылетает из двигателя, создавая тягу — силу, которая «толкает» аппарат. Однако для того, чтобы появились ионы, газ сначала нужно ионизировать — убрать у атомов рабочего газа электрон, превратив их в положительно заряженные частицы. Газ, который состоит из электронов, ионов и атомов, называется плазмой.
Плазма генерируется внутри разрядной камеры — с одной ее стороны располагается подвод газа, а со второй — электроды ионно-оптической системы. Это две или три тонкие пластины, расположенные на расстоянии порядка миллиметра друг от друга, со множеством отверстий. Между ними приложено электрическое поле, ускоряющее положительное ионы из плазменного разряда. Из отверстий в электродах выходит направленный поток ионов, обеспечивающий движение космического аппарата.
— Мы исследуем метод повышения тяги двигателя за счет изменения геометрии основных элементов конструкции высокочастотного ионного двигателя, — рассказал «Известиям» руководитель проекта, ведущий научный сотрудник НИИ прикладной механики и электродинамики МАИ Вартан Абгарян. — В частности, мы рассматриваем влияние формы разрядной камеры и электродов ионно-оптической системы на характеристики двигателя. Кроме этого мы будем изучать эффективность применения магнитной защиты стенок разрядной камеры от выпадения заряженных частиц из плазмы.
Такая постановка задачи определения облика высокочастотного ионного двигателя ранее нигде в мире не применялась.
— Мы ожидаем улучшения эксплуатационных характеристик двигателя, в частности увеличения тяги на 10–15%, и эффективности использования рабочего газа, — сообщил Вартан Абгарян. — После создания устройства «в железе» появятся рекомендации для прототипа двигателя, который можно будет представить ведущим ракетно-космическими предприятиям РФ.
Для проведения вычислений используется инженерная модель плазменного разряда в высокочастотном ионном двигателе. Она позволяет оценить распределение различных параметров плазмы по объему разрядной камеры.
— Эти параметры в высокочастотном индуктивном разряде зависят от большого количества различных факторов, в том числе и от формы разрядной камеры и электродов ионно-оптической системы, — рассказал заместитель начальника лаборатории НИИ прикладной механики и электродинамики МАИ Андрей Мельников. — Рассчитав распределение этих параметров, мы можем оценить характеристики двигателя. Таким образом, рассматривая различные конфигурации камеры и электродов ионно-оптической системы, появляется возможность определить их оптимальные формы, которые могут обеспечить повышение тяги и коэффициента полезного действия двигателя.
Практически все ведущие космические страны рассматривают применение ионных двигателей на борту космических аппаратов, предназначенных для миссий в дальнем космосе. В частности, российский ядерный буксир «Зевс», который сможет доставить к Юпитеру десятки тонн полезной нагрузки, будет использовать именно подобные технологии.
— Ионные двигатели были разработаны в СССР, и Россия до сих пор остается лидером в этом направлении, — сообщил член-корреспондент Российской академии космонавтики Андрей Ионин. — Главное преимущество таких двигателей — долгое время работы в противоположность химическим, которые «выгорают» крайне быстро. Главные недостатки — небольшая тяга и необходимость огромной энергии для работы. На спутниках последняя проблема решается за счет использования солнечных батарей. Но если аппарату нужно повысить тягу, придется собирать двигатели в целые блоки, и энергии им потребуется намного больше. Отсюда необходимость ядерного источника энергии, как на «Зевсе».
Эксперты отмечают, что химические жидкостные ракетные двигатели в любом случае намного больше подходят для выведения космических аппаратов на низкие околоземные орбиты. Однако для дальнейших операций в космосе во многих случаях более эффективны ионные.
— При этом даже небольшой прирост величины тяги ионного двигателя — то, за что стоит бороться. 15% — это хороший результат, — считает ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. — Это означает, что скорость аппарата будет на 15% больше при той же массе топлива. Если получится воплотить конструкцию «в железе», можно будет поздравить коллег с заметным достижением, хотя, конечно, предстоит большая работа по установке двигателей на космический аппарат.
Проект поддержан грантом Российского научного фонда. В будущем ученые планируют повысить тягу двигателя на 40% за счет дальнейшей работы с его конструкцией.