Новости

5 июня, 2018 13:07

Луч-бублик поможет создать наноиглы для миниатюрной электроники

Источник: Индикатор
Найден способ создавать сверхтонкие элементы наноэлектроники при помощи лазерных лучей в форме бублика. Новая технология поможет уменьшить элементы на микросхемах до размеров нескольких десятков атомов, что в десять раз меньше, чем возможно сегодня. Работа была выполнена при поддержке гранта Российского научного фонда. Результаты исследования опубликованы в журнале Applied Physics Letters.
Источник: MotionFlow/Flickr

Для создания микросхем с нанометровыми элементами используют специальные зеркала, фокусирующие рентгеновское излучение. Чтобы сделать элементы размером менее 20 нм, нужно использовать излучение с еще меньшей длиной волны. Однако фотоны такого излучения несут очень большую энергию и неминуемо портят зеркало. Ученые из Института теоретической физики имени Л.Д. Ландау совместно с зарубежными коллегами определили, какие процессы происходят с поверхностью зеркала из нескольких слоев хрома и золота при «бомбардировке» высокоэнергетическими фотонами.

Физики использовали так называемый вихревой луч, яркость которого распределена по кольцу вокруг его оси, то есть в форме бублика. В более ранних работах было показано, что обычный луч с максимумом яркости на центральной оси пучка выбивает из зеркала несколько слоев хрома и золота, оставляя на месте воздействия своего рода кратер, похожий на те, что оставляют упавшие на Землю метеориты. Когда экспериментаторы облучили зеркало вихревым лучом, на поверхности вместо типичного кратера образовалась кольцевая выемка с тонкой микроиглой, возвышающейся в центре.

«Это выглядело непонятным, как будто вещество из выемки собралось в центральной игле, там где интенсивность пучка была очень малой, Чтобы объяснить результат эксперимента, мы рассчитали траектории всех атомов хрома и золота, которые подверглись воздействию луча – это примерно 100 млн атомов», — рассказал один из авторов исследования, Василий Жаховский, научный сотрудник ИТФ имени Л.Д. Ландау.

Оказалось, что в месте наибольшей интенсивности пучка – то есть по кольцу – резко растут температура и давление. Максимальное давление достигает 200 тысяч атмосфер — такие условия характерны для детонации небольшой атомной бомбы. Это колоссальное давление возникает на несколько пикосекунд в очень маленьком пространстве кольца диаметром всего 2 микрометра. В таких экстремальных условиях вещество зеркала плавится и стремится расшириться. Однако золото и хром нагреваются неодинаково, поэтому слои разных металлов по-разному участвуют в этом процессе.

Фото: А. Кратер с наноиглой, оставшийся на поверхности зеркала после воздействия луча-"бублика" с интенсивностью импульса 1 микроджоуль (слева) и 0,9 микроджоуля (справа). Б. (a) Фотография кратера, сделанная на сканирующем электронном микроскопе (увеличение 20 000 раз). (b) С использованием фильтра, пропускающего только излучение хрома. (c) С использованием фильтра, пропускающего только излучение золота. Источник: ИТФ

«Получается что-то похожее на сильно накачанное колесо, внутри которого под эластичной покрышкой из расплава хрома находится золотой пар под огромным давлением», — добавил ученый.

При этом в центре пятна, где интенсивность луча близка к нулю, остается холодный «остров», над которым образуется тонкая струя из чистого хрома. Так как слой прогрева небольшой, вся система быстро остывает, и струя затвердевает. В результате формируется микроигла. Таким образом, ученые объяснили, почему при воздействии вихревого луча лазера на зеркале образуются мироиглы, а не кратеры. Новая работа показала, что, используя лазер лучом-бубликом и многослойные подложки, можно получать весьма сложные наноэлементы. Описанная технология позволяет производить микросхемы с элементами толщиной 2-4 нм, то есть в несколько атомов. Кроме того, регулируя параметры лазерного воздействия, можно получать элементы различного химического состава.

28 марта, 2024
Ученые ИТМО создали более долговечные синие перовскитные светодиоды
Ученые ИТМО нашли новый способ получения синего излучения у перовскитных нанокристаллов. Он позвол...
28 марта, 2024
Ученые научились управлять мощностью электронного пучка в течение его импульса
В Институте сильноточной электроники СО РАН модернизирована уникальная научная электронно-пучковая...