Принцип действия литий-ионных и калий-ионных аккумуляторов схож. В их основе – два электрода, анод и катод, помещенные в одно пространство — корпус аккумулятора. Корпус заполнен пористым сепаратором, который изготавливается из полипропилена и полиэтилена. Сепаратор, в свою очередь, пропитан электролитом — раствором соли. Электрический ток возникает, когда ионы вещества (лития, натрия, калия) движутся из материала анода через электролит в материал катода. Когда все ионы вещества из анода перейдут в катод, аккумулятор полностью разрядится. Во время зарядки при подключении внешнего источника электропитания происходит обратный процесс. Ионные аккумуляторы различаются только электродными материалами и электрохимическими реакциями, которые протекают в ходе циклов заряда-разряда.
«Эта работа посвящена исследованию полученного нами материала на основе восстановленного оксида графена и диоксида олова в качестве анода в калий-ионном аккумуляторе. Недавно в нашей лаборатории был разработан метод, который позволяет наносить на поверхность листочков восстановленного оксида графена покрытие из наноразмерных кристаллов дисульфида олова. Дисульфид олова SnS2 — это то самое вещество, которое используется в качестве основы для краски, имитирующей позолоту. Получается, что мы покрасили золотой краской листочки графена, толщина которых один-два нанометра, а длина и ширина — около одного микрона», — рассказал один из авторов статьи Петр Приходченко, руководитель проекта РНФ, доктор химических наук, заведующий лабораторией пероксидных соединений и материалов на их основе Института общей и неорганической химии имени Н.С. Курнакова РАН.
Авторы показали, что такой материал хорошо работает в качестве электрода в литий- и натрий-ионных аккумуляторах. Он обратимо взаимодействует с калием и может быть использован в качестве анода в калий-ионном аккумуляторе. Ученые отмечают, что им было важно показать, что разработанный ими метод позволяет получать уникальные материалы, которые могут использоваться для решения самых разных задач, например, для создания новых устройств накопления энергии.
Петр Приходченко добавил, что калий-ионный аккумулятор вряд ли имеет реальные перспективы для массового применения в ближайшие годы. Это связано со многими проблемами, например, с тем, что размер ионов калия значительно больше ионов лития. Большому катиону труднее встроиться в структуру электродного материала, это приводит к значительному увеличению объема, что сказывается на стабильности электрода. Кроме того, калий значительно тяжелее натрия и лития, поэтому удельная электрохимическая емкость калий-ионного аккумулятора должна быть ниже в аналогичных условиях.
Ученые предсказывают, что на основе соединений калия можно реализовать более высоковольтовые, то есть более мощные, аккумуляторы по сравнению с натриевыми аналогами. Некоторые исследователи указывают также на то, что ионная проводимость в калийсодержащих электролитах выше, чем в натрийсодержащих. На данный момент ученые получили слишком мало экспериментальных данных, чтобы можно было однозначно судить о практической значимости данного направления. Для развития этой области химии важно понимать, какие процессы протекают в калий-ионных аккумуляторах, в чем их отличия от литиевых или натриевых аналогов, а в чем имеются общие подходы для оптимизации работы устройств.
«Грант РНФ играет решающую роль в наших исследованиях. Для нас это в первую очередь возможность получить современное лабораторное оборудование для синтеза и исследования наноматериалов. Кроме того, это возможность участвовать в международных конференциях, проводить исследования в других организациях, в том числе в ведущих зарубежных университетах на оборудовании, которого нет у нас в институте, а зачастую и вообще в России», — заключил ученый.
Работа проходила в сотрудничестве с учеными из Университета Дикина, Австралия, и Еврейского университета в Иерусалиме, Израиль.