Группа исследователей из Института общей физики РАН (ИОФ РАН) опровергла общепринятые представления о процессах, происходящих на поверхности серебра в самом начале его окисления, тем самым приблизившись к пониманию сложнейшего механизма взаимодействия серебра и молекулярного кислорода. Это чрезвычайно важно как для фундаментальной науки, так и для дальнейших приложений в химической промышленности. О своей работе ученые рассказали в статье, опубликованной в июльском номере журнала Physical Review Letters.
Одна из важнейших реакций — реакция частичного окисления этилена, при котором возможны два канала. В первом случае происходит «сгорание» этилена до углекислого газа и воды. Однако наиболее интересным и мягким является частичное окисление с образованием эпоксида, и перед исследователями всегда стояла задача заставить реакцию окисления развиваться по второму сценарию.
Основным нерешенным вопросом является определение структур, состоящих из особых атомов кислорода на поверхности серебра, которые и участвуют в образовании эпоксида. Проблема оказалась трудноразрешимой — отчасти из-за ее теоретической сложности, отчасти из-за невозможности однозначно определить реальную атомную структуру окисленной поверхности.
В начале нашего века, изучив с его помощью момент начала окисления серебряной поверхности, ученые обнаружили на ней множество темных объектов размером около 1 нанометра. Что это за пятна, было неясно, однако, подумав, научное сообщество решило, что это отдельные атомы кислорода, адсорбированные (захваченные и прикрепленные) на поверхности серебра.
Эта интерпретация была простейшей, и она устроила на тот момент всех исследователей в данной области, но, как сейчас выясняется, была неверной.
Научный коллектив из Института общей физики РАН — одна из немногих групп в России, способных проводить исследования на атомном уровне при помощи сканирующего туннельного микроскопа. Более того, именно ученые из ИОФ РАН являются разработчиками линейки сверхвысоковакуумных сканирующих туннельных микроскопов GPI-300 и GPY CRYO, серийно производимых российской компанией SigmaScan.
В своей работе ученые использовали низкотемпературный сканирующий туннельный микроскоп GPY CRYO, работающий при температуре жидкого гелия (–268 ºС). При этой температуре атомы на поверхности полностью теряют свою подвижность, в результате чего становится возможным получать изображения поверхности с атомным разрешением наивысшего качества. На этих изображениях вместо «простых» черных точек, наблюдаемых ранее, ученые обнаружили объекты причудливой формы, напоминающие трилистники. Для того чтобы понять, какого рода объекты скрываются за трилистниками, в ИОФ РАН были проведены теоретические расчеты. В результате было установлено, что каждый объект состоит из вакансии в верхнем слое серебра, вокруг которой распределены шесть атомов кислорода, причем три атома находятся на поверхности, а три — под первым слоем серебра.
По словам Бориса Андрюшечкина, каждый трилистник можно назвать точечным, или локальным, оксидом.
Установление его атомной структуры — лишь первый шаг в понимании процессов, происходящих при окислении серебра, но шаг серьезный.
«Наша работа, — продолжает Борис Андрюшечкин, — существенно меняет общепринятые представления о природе атомных структур, образующихся на поверхности серебра на начальных этапах окисления. Это означает, что и последующие структурные и химические превращения на поверхности серебра при окислении могут проходить не так, как это нам сейчас представляется».
Исследования атомных структур поддержаны грантом Российского научного фонда (РНФ).