Новости

7 марта, 2018 12:25

Ученые придумали, как создавать треугольные кирпичи с помощью самосборки молекул

Источник: Газета.ru
Российские ученые из Омского государственного технического университета разработали метод самосборки атомов и молекул в двумерные нанообъекты, который в будущем позволит производить их в промышленных масштабах для множества разных задач. Работа была выполнена в рамках гранта Президентской программы исследовательских проектов Российского научного фонда (РНФ) и опубликована в журнале Physical Review B.
Фото: расположение молекул-димеров на гексагональной подложке. Источник: Павел Стишенко.

В рамках гранта РНФ исследователи из Омского государственного технического университета разработали программный продукт, позволяющий заранее предсказать, какие наноструктуры можно искусственно получать из определенных молекул.

Ученые умеют манипулировать веществом на уровне отдельных атомов. Своеобразным достижением стала публикация в 1990 году статьи в журнале Nature, в которой описывалось, как ученые с помощью сканирующего туннельного микроскопа сумели выложить из 35 атомов ксенона буквы IBM. Сегодня разнообразные конструкции, собираемые искусственно из отдельных атомов, могут иметь размеры до десятых долей нанометров (для сравнения – размер одной молекулы воды около 0,3 нанометров). Такие структуры уже находят применение в целом спектре практических приложений. Благодаря им создают новую электронику, всевозможные точные и надежные датчики типа «электронный нос» и катализаторы для химической промышленности. Наконец, манипулирование веществом с атомарной точностью находит широкое применение в медицине – при целевой доставке лекарств.

При конструировании структур с точностью до атома в них начинают проявляться интересные квантовые свойства. На атомном уровне можно сделать множество различных объектов, буквально водя иглой микроскопа по поверхности подложки и выстраивая атомы в нужном порядке. Проблема в том, что такой метод не позволяет производить необходимые наноразмерные объекты массово, поэтому для их практического применения необходим процесс, который будет собирать такие конструкции автоматически, – метод самосборки.

«В природе мы видим этот процесс в ДНК – очень сложной конструкции, которая сама собирается с точностью до атома в огромных количествах в живых организмах», – поясняет старший научный сотрудник Омского государственного технического университета Павел Стишенко.

Сымитировав аналогичные процессы, ученые смогут собирать то, что им нужно: различные конструкции необходимых размеров, всевозможные нанотрубки, которые в настоящее время изготавливаются довольно грубо. В процессе самосборки основным фактором являются квантовые силы, которые описывает уравнение Шредингера, не имеющее простых решений при описании сложных систем.

«Мы разработали инструментарий, который позволяет исследовать процессы самосборки на компьютере, не проводя сложные, долгие и дорогие эксперименты», – пояснил Стишенко.

В своей работе ученые применили разработанные ранее программы, алгоритмы и методы для исследования димерных молекул на подложке, имеющей сотовую структуру (яркий пример такой структуры – графен). Димерами называются молекулы, состоящие из двух одинаковых элементов (атомов, радикалов, групп), они имеют осевую симметрию и два активных центра, что делает их похожими на гантели.

Молекулы-димеры могут образовывать на поверхности конструкции, интересные тем, что в них наблюдается так называемая «чертова лестница» фазовых переходов. Привычная нам вода имеет три четко разделяемые фазы: лед, пар и жидкое состояние. В отличие от нее, некоторые вещества, как выяснилось, могут обладать бесконечным количеством довольно устойчивых фаз – конкретных структур, формирующихся на поверхности. Термин «чертова лестница» иллюстрирует собой график фазовых переходов, который в этом случае похож на лестницу конечной длины с бесконечным количеством ступенек.

В случае димеров вся поверхность оказывается разбитой на треугольники. Такая фаза наиболее энергетически выгодна, то есть имеет наименьшую энергию. Треугольная форма при этом диктуется симметрией сотовой решетки, на которой происходит самосборка. Поскольку размеры треугольников могут быть любыми (сторона может состоять из двух, трех, пяти и иного количества молекул), есть бесконечное число способов «закрыть» ими поверхность. Ученые показали, что при создании наноразмерных структур размеры треугольников легко варьировать, всего лишь изменяя внешние условия самосборки, например, меняя давление газа. В параметры модели закладывается геометрия выбранных молекул и энергия их взаимодействия между собой, на выходе получается набор возможных фаз вещества, полученных в процессе самосборки.

«Меняя всего один макроскопический параметр, давление, мы можем получать разные фазы вещества, – пояснил Стишенко. – По сути, мы нашли способ делать треугольные кирпичи, из которых в будущем можно сделать что угодно в любых количествах».

Найдя способ реализации процессов самосборки на поверхности, ученые надеются перейти от «нанонауки» к нанотехнологиям, которые смогут давать конечный продукт – наноразмерные объекты в нужных количествах.

16 апреля, 2024
Здоровые митохондрии помогли замедлить развитие наследственной мышечной дистрофии у мышей
Ученые выяснили, что введение «здоровых» митохондрий в скелетные мышцы смягчает проявления дистрофии...
16 апреля, 2024
Историю заселения сибирского озера Шира реконструировали с помощью донных отложений
Красноярские ученые впервые проследили историю заселения окрестностей озера Шира на основе би...