Новости

20 сентября, 2017 14:33

"Жидкие мышцы" получили новую силу

Источник: Коммерсантъ
Источник: Пресс-служба РНФ

Езда по стиральной доске

Про амортизаторы мы невольно думаем, наверное, ежедневно и по много раз при наезде на каждую выбоину на дороге или на "лежачего полицейского". Но едва ли кто-то при этом вспоминает, как устроен амортизатор.

Обычно он представляет собой комбинацию пружины с жидкостным демпфером. Пружина упруго принимает ударные нагрузки на колеса, а демпфер снижает нагрузку и "успокаивает" колебания пружины. Мощности демпфирующей системы зачастую не хватает, но если ее наращивать, то амортизатор перестанет замечать мелкие препятствия, итог — езда словно по стиральной доске. Выход очевиден — регулируемый демпфер, который может изменять мощность применительно к условиям движения.

Конструкция современных демпфирующих устройств основана на передавливании при возникновении нагрузки жидкости из рабочего цилиндра в сообщающийся сосуд через маленькое отверстие поршнем, шток которого связан с базой автомобиля. Пружина возвращает систему в исходное состояние. Для управления работой демпфера необходимо менять его исходные характеристики — регулировать поток жидкости через отверстие в зависимости от приложенной нагрузки.

Электрореологический эффект открывает новые возможности при конструировании адаптивных систем транспорта, например, ABS тормозных систем

Это можно сделать двумя путями. Первый заключается в регулировке размера отверстия, через которое продавливается рабочая жидкость. Отверстие может работать, например, как диафрагма фотоаппарата. Так иногда и поступают, однако механические системы могут выходить из строя, особенно при длительной эксплуатации.

Второй путь — менять не геометрию демпфера, а вязкость рабочей жидкости. Чем выше нагрузка на демпфер — тем выше вязкость жидкости, а с уменьшением нагрузки вязкость вновь уменьшается. Но где взять такую жидкость?

Умная жидкость

 

Слева — электрореологическая жидкость между двумя плоскими электродами в электрическом поле, зазор 4 мм, напряженность поля 500 В/мм. Справа — поле снято

 

В 1947 году американец Уиллис Уинслоу запатентовал "Метод и средства для перевода электрических импульсов в механическую силу". В основе изобретения лежал открытый им эффект изменения вязкости суспензий частиц в диэлектрических жидкостях при наложении электрического поля. Вязкость суспензий изменялась пропорционально напряженности поля очень быстро — в течение миллисекунд. Переход из состояния текучести к вязкопластическому сопровождался значительным ростом механических свойств материала, таких как предел текучести и напряжение сдвига, при очень незначительных затратах электрической мощности.

Теоретический и практический интерес к этому эффекту, названному электрореологическим, и к жидкостям, названным электрореологическими, не угасает уже 70 лет. За эти годы было установлено, что величина эффекта сильно зависит от типа материала-наполнителя, от используемой диэлектрической жидкости, а также от разнообразных добавок-модификаторов. Учеными всего мира были исследованы самые разнообразные материалы в качестве компонентов электрореологических жидкостей.

От муки до наноматериалов

На начальном этапе в состав электрореологических жидкостей вводили природные соединения: пористые и слоистые алюмосиликаты типа цеолитов и глин, полисахариды — крахмал и муку и т. д. Впоследствии были апробированы и более экзотические материалы — фуллерены, высокотемпературные сверхпроводники, полупроводниковые полимеры. Однако механические характеристики электрореологических жидкостей были недостаточными для их практического применения.

Только в 2003 году был совершен прорыв в области создания электрореологических жидкостей и устройств на их основе. Уникальные свойства проявили наночастицы оксалатотитанила бария, покрытые слоем легко поляризуемых молекул мочевины. Суспензия, содержавшая 30% таких частиц в силиконовом масле, в электрическом поле теряла текучесть и фактически приобретала свойства твердого тела. Но такая электрореологическая жидкость имеет относительно медленную скорость электрореологического отклика и обладает высокой коррозионной активностью.

Струя "умной жидкости" с абразивными наполнителями и регулируемой вязкостью может быть рабочим телом при сверлении отверстий в алмазах

В последующие годы появилось значительное число новых наноматериалов, использованных в качестве наполнителей электрореологических жидкостей, показавших высокую эффективность. В частности, нашей группой при выполнении исследований по гранту Российского научного фонда было впервые обнаружено, что одним из таких наполнителей может стать наноразмерный диоксид церия, сравнительно недорогой материал, широко применяемый в современной промышленности в составе полирующих смесей, катализаторов.

Полученные нами суспензии с содержанием 60 масс.% диоксида церия обладали исключительно высокой стабильностью. При этом значения напряжений сдвига для них достигали в три-четыре раза больших значений, чем для электрореологических жидкостей на основе традиционно используемого диоксида титана с добавками поверхностно-активных веществ (для тех же напряженностей электрического поля и концентрации наполнителя) и примерно в 40 раз больших значений, чем для электрореологических жидкостей на основе немодифицированного диоксида титана.

Управление отдачей

Сравнительный анализ седиментационных (скорость оседания частиц), диэлектрических и электрореологических характеристик полученных нами материалов позволил выявить ряд составов, представляющих непосредственный практический интерес.

Поведение наночастиц в электроуправляемых реологических жидкостях. Вверху — хаотическое расположение наночастиц в электрореологической жидкости в отсутствие электрического поля. Внизу — образование прочных цепочек наночастиц при наложении электрического поля, ведущее к затвердеванию электрореологической жидкости

 

Во-первых, это высококонцентрированные суспензии (60 масс.%) нанокристаллического диоксида церия в полидиметилсилоксане ПМС-20. Для них характерны высокая седиментационная устойчивость и значительная величина электрореологического эффекта (предел текучести 20 кПа при напряженности электрического поля 5 кВ/мм). Во-вторых, суспензии нанокомпозитов CeO2-TiO2 (40 масс.%) в полидиметилсилоксане ПМС-20, обладающие наибольшей чувствительностью к напряженности электрического поля в процессе растяжения и сжатия при электрореологических испытаниях. Значение предела текучести для данной системы, определенное при напряженности поля 5 кВ/мм, составило 14 кПа.

Эти результаты открывают новые перспективы для создания электроуправляемых реологических систем гашения динамических нагрузок в военной технике, например, при создании платформ для запуска ракет, снижения отдачи орудий и снайперских винтовок высокой мощности. Электрореологические жидкости можно использовать для щадящего закрепления нежестких деталей при их механической обработке, при полировке сложнопрофильных деталей, а также при создании тактильных датчиков для роботов, тактильных силовых дисплеев, силовых джойстиков с обратной связью. И многих других устройств, где требуется автоматически регулировать приложенные силы.

29 февраля, 2024
Лишайники будут выделять больше парниковых газов при изменении климата
Красноярские ученые впервые обнаружили, что лишайники, растущие на живых деревьях, при повышении в...
29 февраля, 2024
Как смочить полимер: перспективы пучково-плазменных технологий
Исследователи из МФТИ, ОИВТ РАН и ИБХФ им. Н. М. Эмануэля РАН при учас...