Новости

4 марта, 2024 12:28

Двумерный композит: российские ученые вырастили в графене алмазные наноструктуры

Источник: RT
Российские ученые получили двумерный материал на основе графена с включениями наноалмазов. Специалисты облучили пленки графена быстрыми и тяжелыми ионами. В таких условиях в определенных областях образовались алмазные кристаллы размерами до десятков нанометров. В новом композите сочетаются одновременно свойства графена и алмаза: он легок и способен проводить ток, как первый, и столь же прочен, как второй. По словам разработчиков, такой материал может найти применение в космической отрасли, авиастроении, автомобильной промышленности и при разработке биомедицинских устройств. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Carbon.
Графен. Источник: Gettyimages.ru © KTSDESIGN/SCIENCE PHOTO LIBRARY

Ученые из Национального исследовательского технологического университета МИСИС (Москва), Института физики полупроводников имени А.В. Ржанова СО РАН (Новосибирск) и Объединенного института ядерных исследований (Дубна) создали 2D-материал на основе графена с включениями наноалмазов. По словам специалистов, такой материал может быть востребован в космической отрасли, авиастроении, автомобильной промышленности и при создании биомедицинских устройств. Об этом RT сообщили в пресс-службе РНФ. Исследование поддержано грантом фонда. Результаты опубликованы в журнале Carbon.

Графен — двумерная форма углерода, отдельные графеновые слои имеют толщину 0,35 нанометра, что в сотни тысяч раз меньше диаметра человеческого волоса. Графен обладает уникальными механическими и электронными свойствами. Алмаз — одна из форм существования углерода в природе. Алмазы образуются под воздействием колоссальных температур и давления в недрах Земли. Поэтому создание алмазных двумерных пленок — непростая научная задача. Разделить алмаз на тончайшие слои, как это делается с графитом при производстве графена, невозможно. При этом алмазные пленки могут обладать рядом интересных физических свойств, отмечают авторы исследования.

Ученые решили пойти от обратного — вырастить наноалмазы в графене, превратив графеновый слой в комбинированный графеново-алмазный материал.


Алмазная группа в графене. Источник: Павел Сорокин.

Для этого специалисты облучили пленки графена пучком ионов высокой энергии — заряженных частиц, полученных из газа ксенона и разогнанных до огромных скоростей. Под действием быстрых и тяжелых ионов в графеновых слоях появлялись разогретые до нескольких тысяч градусов области и ударные волны. Это привело к переходу углерода на этих участках в алмазные кристаллы размерами от нескольких до десятков нанометров. При этом диаметр полученных алмазов мог в несколько раз превышать их толщину, поэтому полученная структура относится к 2D-материалам. 

«С помощью облучения ионами высоких энергий мы смогли получить двумерные наноалмазы, встроенные в пленки графена. Это новый, перспективный для наноэлектроники материал, который практически невозможно создать другими методами», — рассказала RT кандидат физико-математических наук, старший научный сотрудник Института физики полупроводников имени А.В. Ржанова СО РАН Надежда Небогатикова.

Специалисты предсказали механические свойства полученного материала. Выяснилось, что алмазные нанообласти в разы повысили жесткость материала по сравнению с исходными пленками графена. По словам специалистов, полученный 2D-материал сочетает в себе преимущества графена и алмаза: он легок и способен проводить ток, как первый, и столь же прочен, как второй.


Павел Борисович Сорокин. Источник: фото предоставлено исследователем

Такие композиты найдут широкое применение в любой отрасли, где нужны прочные материалы и функциональные покрытия, например в космической авиации, автомобильной промышленности и биомедицинских устройствах.

«Графен может использоваться для улучшения механических свойств других, более слабых материалов путем внедрения в их структуру. Мы продемонстрировали возможность улучшения механических свойств самого графена, создав его композит с двумерными наноалмазами. В дальнейшем мы планируем продолжить эту работу, подробнее изучить механизмы образования алмазов в графене и их электронные свойства, чтобы раскрыть весь потенциал созданного материала», — подытожил руководитель проекта, доктор физико-математических наук, заведующий лабораторией «Цифровое материаловедение» НИТУ МИСИС Павел Сорокин.
Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ
9 апреля, 2024
Уникальные золотые наночастицы для биомедицины
Ученые из Красноярска разработали наночастицы золота с уникальными спектральными характеристиками в ...
9 апреля, 2024
Российские ученые создали долгоживущую ультрахолодную плазму
Российские ученые разработали методику получения стабильной ультрахолодной плазмы. Это одно из агр...