Новости

12 февраля, 2021 15:53

Предложен эффективный способ управления параметрами терагерцевого излучения

Источник: Коммерсант
Ученые предложили новый способ управления поляризацией терагерцевого излучения. Он проще по сравнению с аналогами, так как требует относительно слабых магнитных полей и нормальных температурных условий. Управление терагерцевым излучением поможет развить новые высокоскоростные коммуникационные технологии: увеличить скорость передачи информации для 6G Wi-Fi и развить сети когнитивного радио, способные настраивать собственные параметры. Работа поддержана грантом Российского научного фонда (РНФ).
Установка для генерации терагерцового излучения в окружении сотрудников лаборатории. Источник: Александр Сигов/МИРЭА
Схема гетероструктуры TbCo2 / FeCo, использованной для генерации терагерцового излучения. Источник: Khusyainov et al. / Scientific Reports, 2021
3 / 4
Установка для генерации терагерцового излучения в окружении сотрудников лаборатории. Источник: Александр Сигов/МИРЭА
Схема гетероструктуры TbCo2 / FeCo, использованной для генерации терагерцового излучения. Источник: Khusyainov et al. / Scientific Reports, 2021

Терагерцевое излучение — область электромагнитного излучения между инфракрасным и микроволновым диапазонами (длины волн от 0,03 до 1 мм). Это излучение уже используют для разработки связи нового поколения, для определения химического состава вещества и неповреждающей медицинской диагностики. Передача такого сигнала происходит обычно в линейно-поляризованном виде, когда электрическое поле волны колеблется только вдоль одной линии в плоскости, перпендикулярной направлению распространения. Эффективное управление направлением поляризации необходимо для развития новых систем сверхбыстрой и сверхточной связи.

«Управление поляризацией терагерцевого излучения открывает новые функциональные возможности систем поляризационной микроскопии субмиллиметрового диапазона. Одной из перспективных областей применения разработки является беспроводная связь. По сравнению с микроволновым диапазоном использование такого излучения позволяет на порядок увеличить скорость передачи информации, в частности для 6G Wi-Fi. Для этих систем возможность управления поляризацией позволяет создавать как новые функциональные базовые элементы, так и новые коммуникационные технологии. Они включают энергоэффективную связь, сети когнитивного радио, которые могут настраиваться самостоятельно, и внутриполосный полнодуплексный режим, который позволит увеличить пропускную способность в два раза»,— рассказывает Александр Сигов, академик РАН, доктор физико-математических наук, руководитель проекта по гранту РНФ, заведующий кафедрой наноэлектроники и президент МИРЭА — Российского технологического университета.

Есть несколько способовуправлять направлением поляризации, но все известные технологически сложны, а приборы на основе этих методов дороги и трудны в настройке. Ученые из РТУ МИРЭА, Института общей физики имени А.М. Прохорова РАН (Москва) совместно с физиками из Института электроники, микроэлектроники и нанотехнологий (Лилль, Франция) обнаружили и изучили более простой и эффективный способ управления поляризацией. Он основан на эффектах спинового тока в гетероструктурах TbCo2 / FeCo.

«Особенность гетероструктуры, используемой в наших экспериментах, заключается в возможности создавать в ней спин-переориентационный переход при изменении величины намагничивающего поля,— поясняет Александр Сигов.— Для разработки этого принципа управления поляризацией использован более чем 20-летний опыт исследования явлений спин-переориентационного перехода и связанных эффектов в специально синтезируемых гетероструктурах при тесном сотрудничестве с французской научной группой профессора Перно и доктора Тиерселян из ИЭМН».

Чтобы получить гетероструктуры, тонкие слои из железа и кобальта (FeCo), тербия и кобальта (TbCo2) и рутения (Ru) нанесли на стеклянную подложку. Это сделали с помощью катодного распыления, когда напыляемые частицы выбиваются из мишени ионами газа в электрическом поле. Полученный наноматериал, помещенный в относительно слабое магнитное поле, облучали импульсами инфракрасного лазера с одной стороны и детектировали терагерцевое излучение и его поляризацию с другой. Для управления поляризацией оказалось достаточно только изменения величины напряженности магнитного поля, прикладываемого к излучателю.

Авторы объясняют этот эффект объединением спинтронного принципа генерации и эффекта управляемой спиновой переориентации. Спинтронный принцип генерации заключается в том, что короткий оптический импульс возбуждает импульсный спиновый ток от облучаемой поверхности вглубь структуры, то есть происходит перенос намагниченности без переноса заряда. Внутриатомные электрические поля отклоняют спиновый ток, генерируя связанный с ним электрический ток, протекающий в плоскости структуры перпендикулярно направлению спиновой поляризации. В результате импульсный электронный ток излучает электромагнитную терагерцевую волну, которая также оказывается поляризованной перпендикулярно намагниченности структуры.

Управляемая спиновая переориентация обусловлена тем, что изменение величины намагничивающего внешнего поля в области спин-переориентационного перехода приводит к повороту магнитного момента в плоскости структуры от 0°до 180°. Из-за этого изменяется поляризация излучения. Ученые отмечают, что управление поляризацией осуществляется относительно слабыми магнитными полями и при нормальной температуре. Предложенный метод управления гораздо проще и эффективнее существующих аналогов, что позволит использовать разработку для управления терагерцевым излучением уже в ближайшем будущем.

«Сейчас в наших исследованиях внимание сосредоточено в основномна фундаментальных аспектах проблемы, касающихся механизмов взаимодействия спиновой системы с фемтосекундным лазерным излучением. Мы ищем способы повышения эффективности спинтронной эмиссии электромагнитного излучения и снижения энергоемкости систем управления поляризацией излучения,— комментируют доктора физико-математических наук, профессора Владимир Преображенский и Елена Мишина.— Мы считаем, что наиболее перспективный вариант для решения наших задач — это мультиферроидные гетероструктуры на основе тех, что использованы в данной работе, так как они сочетают спиновое упорядочение и спонтанную электрическую поляризацию. Накопленный совместно с французскими коллегами опыт работы с такими материалами позволит использовать их и для других приложений, в частности для систем магнитоэлектрической памяти с ультранизким энергопотреблением».

 

17 февраля, 2021
Новая технология уменьшит потери на выходе из волоконного световода
Чтобы повысить эффективность прохождения сигнала через оптоволокно, применяется его специальная ...
11 февраля, 2021
Физики придумали квантовый переключатель для электроники
Ученые открыли необычный квантовый эффект, с помощью которого можно гибко управлять течением электри...