Новости

14 мая, 2021 14:39

Явление магнонной сверхпроводимости получено при комнатной температуре

Источник: Коммерсант
Квантовая физика требует охлаждения до сверхнизких температур, и обнаружить ее эффекты без применения дорогих охлаждающих установок обычно невозможно. Российские ученые впервые в мире добились квантового состояния магнонов — магнитных возбуждений в магнетиках — при комнатной температуре. Результаты исследования могут помочь при разработке квантовых компьютеров, не нуждающихся в охлаждении. Работа выполнена при поддержке Российского научного фонда (РНФ).
Mai-Linh Doan / Wikimedia Commons

Квантовые эффекты обычно проявляются в законах микромира, физике элементарных частиц и ядерной физике. Однако при очень низких температурах они могут наблюдаться и в макроскопических масштабах. В последние десятилетия внимание ученых привлекает явление сверхпроводимости — протекание электрического тока без сопротивления. К таким явлениям относится и магнонная сверхпроводимость, открытая в 1984 году в Институте физических проблем им. П. Л. Капицы РАН (Москва). Она проявляется у магнетиков — веществ, обладающих магнитными свойствами. При этом магнетик можно представить как суперпозицию (наложение) основного состояния, то есть с минимальной возможной энергией, и магнонов — элементарных квантовых возбуждений, при которых энергия повышается.

Обычно для наблюдения этих явлений необходимо охлаждать образцы до чрезвычайно низких температур (около –273°C), что требует дорогого и сложного оборудования. Сверхтекучесть (протекание через узкие места без трения) и сверхпроводимость при комнатной температуре до сих пор никому обнаружить не удалось, а магнонную проводимость получили исследователи Российского квантового центра. Они провели эксперименты на монокристаллической пленке железо-иттриевого граната. Это ферромагнитное, то есть при определенных температурах обладающее самопроизвольной намагниченностью, вещество серо-зеленого цвета на основе химического соединения окиси железа FeO с окисью иттрия YO. В нем магноны могут дольше сохранять свои свойства. Было показано, что при сильном возбуждении магноны образуют когерентное квантовое состояние, аналогичное бозе-эйнштейновскому конденсату атомов при сверхнизких температурах,— магнонный БЭК. При этом довольно много атомов вещества переходит в статистически маловероятные квантовые состояния, и в результате квантовые свойства могут проявляться на макромасштабе.

«Получить квантовые явления сверхтекучести и сверхпроводимости при комнатной температуре было давней мечтой исследователей, но считалось, что они не могут проявляться в таких условиях. Наши исследования железо-иттриевого граната показали, что в этом веществе необходимые явления наблюдаются даже при более высокой температуре. Это открытие дает возможность применения квантовых явлений в приложениях без использования дорогостоящих и габаритных систем охлаждения. Это казалось чем-то из области фантастики, но мы получили магнонную сверхпроводимость. В частности, теперь можно работать над созданием перспективных квантовых компьютеров, которые будут работать при комнатной температуре»,— рассказывает руководитель проекта по гранту РНФ Юрий Буньков, доктор физико-математических наук, главный научный сотрудник Российского квантового центра.

4 февраля, 2025
Как получить наноалмазы и металл-углеродные наночастицы в плазме: Решение подскажет математическая модель
Ученые создали математическую модель, которая определяет идеальные условия для плазменного синтеза...
29 января, 2025
Ученые Сколтеха исследовали новую платформу для интегральной полностью оптической логики
Исследовательская группа из Сколтеха и Университета ИТМО под руководством директора Центра фотоники ...