Новости

6 октября, 2020 16:55

Российские ученые разработали новый датчик солнечных частиц

Источник: РИА Новости
Новый детектор солнечных частиц позволит подробнее изучить природу солнечных вспышек, а также улучшить защиту космических кораблей и космонавтов от солнечной радиации. Описание разработки опубликовано в журнале Journal of Instrumentation.
Источник: Пресс-служба РНФ

В процессе преобразования энергии в активных областях солнечной атмосферы появляются потоки частиц с энергиями от десятков килоэлектронвольт до нескольких гигаэлектронвольт. В основном солнечные частицы — это электроны и протоны, но есть и более тяжелые ядра, от гелия до железа.

Несмотря на большое количество наблюдений солнечных спутников, ученые до сих пор многого не знают о порожденных Солнцем космических лучах. Например, неизвестно за счет чего ускоряются частицы при солнечных вспышках, какова роль магнитного пересоединения в ускорении частиц и выходе из короны, как и где формируются зародышевые популяции частиц для дальнейшего ускорения на ударных волнах.

На эти вопросы поможет ответить новый детекторов солнечных частиц, разработанный учеными из МФТИ в сотрудничестве с коллегами из Института ядерных исследований РАН и Института космических исследований РАН. Прибор способен улавливать протоны и электроны с кинетическими энергиями 10–100 МэВ и 1–10 МэВ соответственно. Они составляют основную часть потока высокоэнергетичных частиц от Солнца.

Детектор состоит из нескольких полистироловых дисков, подключенных к фотодетекторам. Проходя через слои полимера, частица теряет часть кинетической энергии, которая переходит в световую. Этот свет улавливается кремниевым фотодетектором, а сигнал анализирует компьютер.

"Сама концепция пластиковых сцинтилляционных детекторов не нова, такие детекторы повсеместно используются в наземных экспериментах, — приводятся в пресс-релизе слова руководителя исследования Александра Нозика, старшего научного сотрудника лаборатории методов ядерно-физических экспериментов МФТИ. — А вот использование сегментированного детектора в совокупности с разработанными нами математическими методами реконструкции позволило достигнуть выдающихся результатов".

Часть работы посвящена определению оптимальной геометрии сегментов детекторов. При увеличении диаметра дисков растет количество анализируемых одновременно частиц, однако растет и масса прибора, что повышает стоимость его доставки на орбиту. Также при увеличении диаметра ухудшается разрешение диска. Чем тоньше каждый диск, тем точнее он может определить энергию протона и электрона, однако большое количество тонких дисков требует большого числа фотодетекторов и громоздкой электроники.

Для подбора оптимальных параметров ученые использовали методы компьютерного моделирования. В итоге они собрали достаточно компактный для доставки в космос прибор — цилиндр диаметром три и высотой восемь сантиметров.

Датчик способен работать в двух разных режимах: регистрировать одиночные частицы при потоке менее 105 частиц в секунду и в интегральном режиме при более интенсивном излучении. Во втором случае разработанный авторами метод анализа распределений частиц не требует высоких вычислительных мощностей.

"Наш прибор показал отличные результаты в лабораторных тестах, — говорит еще один автор статьи Егор Стадничук, сотрудник лаборатории методов ядерно-физических экспериментов МФТИ. — Дальше мы планируем разработать новую электронику, пригодную для работы детекторов в космосе. Кроме того, конструкция детектора будет адаптирована к требованиям космического корабля — мы улучшим массогабаритные характеристики и добавим боковое экранирование. Также планируется разработать более тонкую сегментацию для детектора, чтобы обеспечить точное измерение спектра электронов с энергией порядка 1 МэВ".

Работа проводилась по заказу Института космических исследований РАН при финансовой поддержке Российского научного фонда. Сам детектор был изготовлен в Институте ядерных исследований РАН.

29 марта, 2024
Российские ученые обучили ИИ подбирать эффективную защиту для глаз от лазерного излучения
Российские ученые разработали нейросеть для быстрой оценки способности материалов блокировать опас...
28 марта, 2024
В ИТМО создали более долговечные синие перовскитные светодиоды
Ученые ИТМО нашли новый способ получения синего излучения у перовскитных нанокристаллов. Он позвол...