Новости

18 марта, 2024 14:46

Химики заставили палладий светиться

Источник: Naked Science
Ученые разработали подход, позволяющий создавать новые светоизлучающие материалы на основе органических соединений палладия. Открытие в перспективе может стать основой для светодиодов нового поколения, которые будут использованы при создании дисплеев в смартфонах, мониторов, а также приборов ночного видения. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Inorganic Chemistry.
Научная группа Михаила Кинжалова. Источник: Михаил Кинжалов
Дисплеи на основе органических светодиодов (OLED) не имеют конкурентоспособных альтернатив, поскольку отличаются высоким качеством изображения, быстрой реакцией, низким потреблением энергии и, кроме того, позволяют создавать гибкие панели. Наиболее перспективными светоизлучающими материалами для изготовления OLED-устройств считаются органические производные платиновых металлов, поскольку такие материалы теоретически способны преобразовывать электрические заряды в свет с эффективностью 100 процентов.

В действительности даже самые перспективные из полученных на данный момент светоизлучающих материалов — органических производных платины и иридия — не удовлетворяют технологическим запросам из-за высокой стоимости металлокомплексов, а также быстрого «выгорания» излучающего слоя, поэтому ученые стремятся их улучшить.

Коллектив ученых из Санкт-Петербургского государственного университета, Института общей и неорганической химии имени Курнакова РАН (Москва) и Университета Ливерпуля (Великобритания) разработал подход к созданию нового типа светоизлучающих материалов на основе соединений палладия.

Уникальность подхода состоит в том, что соединения были получены из соли металла и относительно простых органических молекул, при этом «сборка» сложного органического фрагмента осуществлялась прямо в координационной сфере — ближайшем атомном окружении — металла. Это позволило получить невоспроизводимые другими методами светоизлучающие соединения с улучшенными оптическими свойствами.


Кристаллы комплекса палладия в ультрафиолетовом свете. Источник: Михаил Кинжалов

Исследователи получили новые соединения в виде кристаллов и тонких полимерных пленок. Хотя отдельные молекулы не обладали светоизлучающими свойствами, их кристаллы испускали яркий зеленый свет при облучении ультрафиолетом. С помощью рентгеноструктурных исследований авторы определили строение кристаллов: через кристалл исследуемого вещества пропускали рентгеновские лучи, которые отражались на детектор по определенной траектории в зависимости от строения анализируемого соединения.

Так, ученые установили, что в кристаллах расстояние между атомами палладия настолько маленькое, что металлы взаимодействуют между собой. Это взаимодействие приводит к перераспределению электронов, в результате чего вещество может переходить в излучающее состояние. С помощью вычислений ученые выяснили, что взаимодействию между атомами палладия способствует синергетическая, то есть взаимно «усиливающая», комбинация нескольких типов притягательных взаимодействий между органическими фрагментами. Также ученые показали, что, заменив атомы палладия на атомы платины, можно получить материалы с желтым, оранжевым и красным цветом излучения.


Фотофизические свойства полученных соединений. Источник: Михаил Кинжалов

«Палладий относится к металлам платиновой группы и имеет большее по сравнению с платиной и иридием содержание в земной коре, однако, несмотря на это, его соединения практически не используются в светоизлучающих материалах, потому что много энергии рассеивается в виде тепла. Нам удалось не только получить новые соединения палладия с эффективной люминесценцией, но и — что, на мой взгляд, более важно — разработать рецепт дизайна нового типа светоизлучающих материалов», — рассказывает руководитель проекта, поддержанного грантом РНФ, Михаил Кинжалов, доктор химических наук, доцент кафедры физической органической химии Санкт-Петербургского государственного университета.
Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ
10 сентября, 2024
В Казанском университете нашли метод снижения серы в тяжелой нефти
Ученые Института геологии и нефтегазовых технологий Казанского федерального университета (КФУ) первы...
10 сентября, 2024
Богатый потенциал. Стресс заставил микроводоросли из Самарского леса синтезировать больше липидов и витаминов
Ученые определили, что микроводоросль Chlorococcum oleofaciens, обнаруженная в лесной подстилке Са...