Ученые из Института солнечно-земной физики СО РАН совместно с коллегами из Японии выяснили, что плазмосфера (нижний слой магнитосферы Земли) играет важную роль в распределении колебаний магнитного поля нашей планеты. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Journal of Geophysical Research: Space Physics.
Как отмечают авторы работы, от Солнца к Земле идет не только свет, но и поток ионизированных частиц — солнечный ветер, который вызывает магнитные бури. Они, в свою очередь, негативно влияют на работу космических спутников, в результате чего происходят перебои в мобильной связи, сигналах спутникового ТВ и т. д.
От солнечного ветра у нашей планеты есть естественный щит в виде магнитосферы — области вокруг Земли, оканчивающейся на высоте примерно 60 тыс. км. В ее пределах действует магнитное поле, при столкновении с которым поток ионизированных частиц отклоняется от своей изначальной траектории. При этом при соприкосновении с магнитным полем Земли солнечный ветер порождает ультранизкочастотные волны (УНЧ; частоты ниже 1 Гц). Эти волны переносят электромагнитную энергию в магнитосфере на большие расстояния и сопровождают все значимые явления геосферы: магнитные бури, грозы, ураганы и даже землетрясения.
В новой работе исследователи изучили данные о колебаниях магнитного поля Земли, собранные японским орбитальным спутником Arase с 2017 по 2020 год. В результате специалисты выяснили, как магнитосфера реагирует на воздействие солнечного ветра в спокойные геомагнитные периоды и во время магнитных бурь.
Александр Рубцов. Источник: Артем Моисеев
Оказалось, что верхняя граница плазмосферы выступает барьером для распространения ультранизкочастотных волн, которые даже во время сильной магнитной бури не могут проникнуть внутрь. В таких условиях плазмосфера способна контролировать распределение УНЧ-волн в пространстве и удерживать их на расстоянии от своей верхней границы.
«Мы предполагаем, что этот эффект связан с высокой плотностью плазмы на границе плазмосферы. Хотя концентрация частиц в этой области падает, там накапливаются тяжелые частицы. Поскольку плотность является произведением массы на концентрацию, она может быть высокой даже у разреженной среды. В свою очередь, частота УНЧ-волны (как и любой другой волны) зависит именно от плотности среды, в которой она распространяется. Натолкнувшись на область повышенной плотности на границе плазмосферы, УНЧ-волны уже не могут проникнуть глубже, в направлении поверхности Земли», — отметил в беседе с RT аспирант Института солнечно-земной физики СО РАН Александр Рубцов.Хотя волны не проходят в плазмосферу, при магнитных бурях они все равно влияют на работу наземных устройств и аппаратов на околоземной орбите. Как предполагают ученые, причина может быть в передаче энергии частицам плазмосферы при их взаимодействии с УНЧ-волнами. Ускоренные таким образом частицы, в свою очередь, могут достигать поверхности Земли, а также повышать уровень радиации в ближнем космосе, что негативно влияет на космические аппараты на орбите.
«Понимание того, в каких областях пространства работают волны, создаваемые при действии солнечного ветра на магнитосферу Земли, поможет предсказывать повышение интенсивности потоков заряженных частиц, которые могут влиять на работу космических аппаратов. В дальнейшем мы планируем подробнее изучить, как именно различные типы волн взаимодействуют с заряженными частицами в магнитосфере Земли», — подытожил Рубцов.Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ