Экситоны способны поглощать и излучать свет в определенных диапазонах, а эти свойства можно использовать, например, в солнечных элементах, преобразующих свет в электричество, или в нанолазерах. Последние, в свою очередь, перспективны как компоненты оптических компьютеров, которые для работы используют вместо обычной электроники излучающие наноустройства. Однако, чтобы соответствующие приборы работали точно, нужно уметь управлять длиной волны и интенсивностью излучения экситонов.
Ученые из Университета ИТМО (Санкт-Петербург) с коллегами из Южной Кореи и США исследовали поведение экситонов в двумерных полупроводниках, то есть таких материалах, толщина которых составляет всего несколько атомов. Использованные авторами полупроводники состояли из двух слоев: верхний содержал вольфрам и селен, а нижний помимо этих элементов еще включал молибден. В таких двумерных материалах экситоны существуют при комнатной температуре и атмосферном давлении, благодаря чему на их основе можно создавать устройства, не требующие особых труднодостижимых условий работы. С другой стороны, двухслойный полупроводник удобнее, чем однослойный, потому что экситоны в нем «живут» в миллионы раз дольше — вплоть до нескольких микросекунд, которых достаточно для того, чтобы передавать сигналы в оптоэлектронных устройствах.
Интересно, что в двухслойных материалах экситоны есть как в каждом из слоев, так и между ними. Межслойные частицы возникают, когда возбужденный электрон из одного слоя «перепрыгивает» в другой, а дырка от него остается в изначальном месте. Свойства таких экситонов — длина волны и интенсивность излучения — очень чувствительны к тому, как слои взаимно расположены, в частности к расстоянию между ними.
Чтобы определить, как расстояние между слоями образца влияет на свойства экситонов, исследователи точечно — на площади порядка нескольких нанометров (в сотни тысяч раз меньше миллиметра) — сжали образец с помощью специального золотого зонда. Такой зонд не только создавал давление, в десять тысяч раз превышающее атмосферное, но еще и отдавал собственные электроны, с которыми взаимодействовали экситоны. В результате спектр излучения материала сдвинулся в коротковолновую область. Это объясняется тем, что слои полупроводника взаимодействовали сильнее, чем без давления, а межслойные экситоны образовали комплексы с электронами, поступившими от золотого зонда, и в результате поменяли свои оптические свойства.
Этот эксперимент показал, что управлять свойствами экситонов можно, подбирая расстояние между слоями полупроводника и подавая на материал дополнительные электроны. Благодаря этому устройства, излучающие или поглощающие свет за счет экситонов, можно будет очень точно настраивать на определенную длину волны.
«Умея управлять свойствами экситонов, можно создавать оптоэлектронные компоненты, излучающие или поглощающие свет в очень маленькой области пространства — порядка нанометра, что недостижимо с помощью обычной оптики. Такие технологии нужны, например, при создании процессоров для компактных оптических компьютеров, которые смогут работать на порядки быстрее обычных. В дальнейшем мы планируем исследовать поведение экситонов в динамике, то есть в определенных временных промежутках, что позволит лучше понять свойства этих квазичастиц в двумерных полупроводниковых структурах»,— рассказывает руководитель проекта, поддержанного грантом РНФ, Василий Кравцов, кандидат наук (PhD), ведущий научный сотрудник физического факультета Университета ИТМО.Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ