Новости

27 февраля, 2020 11:13

Декорированные золотом наночастицы диоксида титана стали «носом» для обнаружения опасных газов

Ученые Дальневосточного федерального университета (ДВФУ) в сотрудничестве с зарубежными коллегами разработали сенсорный элемент на основе модифицированных наночастиц диоксида титана, декорированных золотом. Сенсор можно применять для обнаружения опасных химических соединений в воздухе, что чрезвычайно важно для мониторинга состояния окружающей среды и работы систем безопасности на производстве. Статья об этом опубликована в журнале Applied Surface Science. Исследования поддержаны грантом Президентской программы исследовательских проектов Российского научного фонда (РНФ).
Картинка: изображение наночастиц, сделанное на сканирующий электронный микроскоп. Источник: Neli Mintcheva et al. / Applied Surface Science, 2020

Новый сенсор работает при обычной температуре, дополнительного нагрева анализируемых химических веществ не требуется. Это сложный наноматериал (нанопорошок), полученный в результате соединения материалов с противоположными свойствами: диэлектрика (диоксида титана) и металла (золота).

Создать его удалось благодаря простой и экологически чистой технологии лазерной абляции в жидкости. Ученые облучили находящиеся в воде наночастицы диоксида титана лазером и добавили к ним химический раствор с ионами золота. В результате на поверхности более крупных частиц диоксида титана образовались частицы золота.

«Лазерная абляция в жидкости – эффективная технология синтеза химически чистых функциональных наноматериалов, строение и состав которых могут быть очень разнообразны. Технология привлекает своей простотой, безопасностью для окружающей среды и невысокой стоимостью. Наноматериалы, получаемые в процессе жидкофазной лазерной абляции, можно использовать не только для создания сенсоров, чувствительных к опасным газам, но и для самого широкого круга задач: от реализации хемо- и биосенсорных платформ до создания солнечных элементов нового поколения. Очень важно, что жидкая среда, в которой происходит процесс синтеза наноматериалов, является естественным барьером, препятствующим попаданию наночастиц в окружающую среду» — рассказал Станислав Гурбатов, руководитель проекта по гранту РНФ, научный сотрудник Научно-образовательного центра «Нанотехнологии» Инженерной школы ДВФУ (Владивосток), кандидат физико-математических наук.

Ученый объяснил, что для изготовления сенсорного элемента использовали коммерчески доступный нанопорошок диоксида титана, который тонко измельчили в водной среде. Полученную дисперсию облучали миллисекундным лазером – с длительностью вспышки в одну тысячную долю секунды. Много это или мало – тысячная доля? Для сравнения, если часы спутника собьются на одну тысячную долю секунды, то координаты он будет выдавать с погрешностью 200–300 километров. В лазерах миллисекундный режим используют для сварки, там, где вещество требуется расплавить. Затем к дисперсии добавляли раствор, содержащий ионы золота (тетрахлороаурат натрия), в результате чего на поверхности диоксида титана образовались частицы металлического золота. Ученым удалось контролировать плотность декорирующих наночастиц золота на поверхности диоксида титана. За счет этого они настроили чувствительность сенсора к молекулам различных опасных соединений: аммиака, ацетальдегида и бензола, которые достаточно широко используются в химической промышленности.

«Новый сенсорный элемент меняет электрическую проводимость при контакте с молекулами газа. Это можно легко определить с помощью обычного электрометра при комнатной температуре. Полученные наноструктуры обладают высокой чувствительностью к газам-аналитам, что в совокупности с простой технологией изготовления и возможностью проводить измерения при комнатной температуре делает их привлекательными для коммерческого использования», — рассказал руководитель научного направления профессор Сергей Кулинич, старший научный сотрудник Научно-образовательного центра «Нанотехнологии» Инженерной школы (ИШ) ДВФУ, кандидат химических наук.

Новый газовый сенсор стал первой разработкой в рамках нового направления в ИШ ДВФУ «Синтез наноматериалов методом лазерной абляции в жидкостях».

23 апреля, 2024
Люди каменного века умели использовать окружающий ландшафт для своих целей
Ученые впервые подробно описали рельеф местности на момент обитания людей на стоянках Быки на терр...
22 апреля, 2024
Новая математическая функция поможет на 20% точнее классифицировать биомедицинские сигналы и диагностировать заболевания мозга
Энтропия сигнала — это показатель, который служит своеобразным отпечатком индивидуальности. Класси...