Новости

23 сентября, 2022 13:27

Догнать и перегнать: ученые нашли способ сделать «слабые» катализаторы наиболее активными

Российские ученые сравнили три группы органических катализаторов и определили, что соединения иода проявляют среди них наибольшую активность. Также они установили, что можно увеличить эффективность и более «слабых» веществ, изменив пространственное окружение атома, участвующего в реакции. Работа поможет усовершенствовать органические катализаторы, широко использующиеся при синтезе лекарств и полимерных материалов. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Organic & Biomolecular Chemistry.
Оценка относительной активности катализаторов на основе различных химических элементов. Источник: Bolotin et al. / Organic & Biomolecular Chemistry, 2022
Органические катализаторы — соединения, ускоряющие химические реакции — вызывают большой интерес у ученых, поскольку устойчивы к действию влаги, не окисляются на воздухе, а также, в отличие от металлсодержащих аналогов, безопасны для окружающей среды и стабильны, что позволяет их извлечь из реакционной смеси после превращения и использовать повторно. Благодаря таким свойствам они перспективны для синтеза широкого спектра веществ не только в лабораторной практике, но и в промышленности.

На сегодняшний день хорошо изучены свойства органических соединений, которые проявляют свою активность как катализаторы благодаря атомам галогенов, в частности иода, выступающего альтернативой катиону металла. Такие катализаторы связываются с веществом, вступающим в реакцию, и позволяют осуществить превращение в разы быстрее. Кроме галогенсодержащих молекул, каталитическую активность обнаружили у соединений, имеющих в своем составе халькогены — элементы соседствующей с галогенами шестнадцатой группы таблицы Д. И. Менделеева. К ним относятся сера, селен и теллур. Однако и этим разнообразие катализаторов не ограничивается. Недавно способность ускорять химические реакции открыли у молекул, содержащих пниктогены — элементы пятнадцатой группы, в которую входят фосфор, мышьяк и сурьма. При этом до сих пор оставалось неизвестным, какие из катализаторов — галоген-, халькоген- или пниктогенсодержащие работают лучше.




Общая структура органокатализаторов последнего поколения и способы их связывания с субстратами реакций. Источник: Bolotin et al. / Organic & Biomolecular Chemistry, 2022.

Ученые из Санкт-Петербургского государственного университета (Санкт-Петербург) сравнили активность девяти типов катализаторов, содержащих галогены, халькогены или пниктогены. Сначала авторы рассчитали для каждой молекулы электростатический потенциал — заряд, распределенный по ее поверхности и позволяющий взаимодействовать с другими веществами. Оказалось, что наибольшим значением обладали соединения галогенов, а наименьшим — соединения пниктогенов. В качестве модельных превращений использовались две наиболее часто встречающиеся при синтезе органических соединений реакции.

Наибольшая активность наблюдалась у иодсодержащего катализатора, поскольку эта молекула обладала наибольшим поверхностным зарядом на центральном атоме. Однако расчеты показали, что в определенных случаях соединения пниктогенов и халькогенов могут достичь той же активности и даже превзойти ее. Для этого нужно, чтобы у элемента было правильное химическое окружение, например, ароматические кольца из атомов углерода — простые и доступные для присоединения химические группы. Такое «соседство» перераспределяет заряд на поверхности молекулы и благодаря этому помогает атомам эффективнее взаимодействовать с нужными компонентами, образовывать стабильные переходные комплексы и тем самым ускорять превращение.
«За последние десять лет уже сменилось несколько поколений органических катализаторов. Наша работа не только впервые позволила сравнить активность различных органокатализаторов последнего поколения, но и помогла обнаружить важные факторы, позволяющие еще больше увеличить их активность. В дальнейшем мы планируем получать органические катализаторы, содержащие хиральные группы (те, которые не совпадают со своим зеркальным отражением), чтобы вовлекать их в асимметрический катализ. Это позволит применять их при производстве широкого спектра биологически активных соединений. Для начала необходимо решить более фундаментальную задачу — выбрать наиболее эффективные каталитические центры, чтобы уже затем "пришить" к ним хиральные группы», — рассказывает руководитель проекта, поддержанного грантом РНФ, Дмитрий Болотин, доктор химических наук, профессор кафедры физической органической химии СПбГУ.

24 мая, 2024
Лазерный рисунок на серебре убережет драгоценности от подделки
Ученые предложили простой и дешевый метод создания оптически неоднородных материалов, которые можн...
24 мая, 2024
Обнаружены связанные с психическими заболеваниями варианты генов развития нервной ткани
Исследователи выявили мутации в генах, которые потенциально могут быть связаны с развитием психиче...