Для любой жидкости характерно явление турбулентности — образование нелинейных волн на ее поверхности. При этом они распространяются вдоль всех направлений с одинаковой скоростью, то есть изотропно. Этот случай турбулентности хорошо исследован. Иначе ведут себя ферромагнитные жидкости в присутствии внешнего магнитного поля. Такие вещества представляют собой взвесь способных намагничиваться наночастиц в воде или в другом растворителе. Например, это могут быть частицы гематита — минерала, входящего в состав железных руд. При действии внешнего магнитного поля скорость поверхностных волн ферромагнитной жидкости зависит от направления их распространения: скорость волн, бегущих вдоль линий магнитного поля, существенно выше, чем у тех, которые распространяются перпендикулярно. Такое свойство называется анизотропия. Несмотря на то, что это явление было открыто около десяти лет назад, оно по-прежнему мало исследовано.
Ученые из Сколтеха (Москва),
Института электрофизики УрО РАН (Екатеринбург) и
Физического института имени П. Н. Лебедева РАН (Москва) в сотрудничестве с коллегами из Парижского университета Сите (Франция) создали компьютерную модель, описывающую распространение волн на поверхности ферромагнитной жидкости. В модели рассматривается несжимаемая ферромагнитная жидкость бесконечной глубины с задаваемой экспериментатором вязкостью, крутизной волны и другими параметрами. Силу воздействующего магнитного поля также можно варьировать.
Было показано, что распределение энергии на поверхности жидкости в отсутствие магнитного поля хорошо описывается уравнением турбулентности для поверхности обычной жидкости типа воды, а в случае сильного магнитного поля более подходящим является уравнение для жидкости с анизотропной турбулентностью.
Выяснилось, что свойства исследованной турбулентности очень близки к тем, какие проявляют жидкости в недрах звезд и магнитосферах планет-гигантов, таких как Юпитер. Для обоих случаев характерно анизотропное распространение волн, и при действии магнитного поля возникают возмущения поверхности, распространяющиеся перпендикулярно ему. Если поле достаточно сильное, это формирует резкие градиенты давления. Процесс напоминает появление корональных петель в солнечной атмосфере.
«Наша разработка будет полезна для исследований в области астрофизики в качестве системы, моделирующей сложные физические процессы, происходящие в космической плазме. Также исследование поможет в создании новых материалов с заданным микрорельефом поверхности и уровнем шероховатости. В дальнейшем мы планируем обобщить полученные результаты и перейти к точному подбору параметров внешнего магнитного поля под различные задачи. Это позволит управлять сложным турбулентным движением жидкостей», — рассказывает руководитель проекта по гранту РНФ Евгений Кочурин, кандидат физико-математических наук, старший научный сотрудник лаборатории нелинейной динамики Института электрофизики УрО РАН.