Новости

13 февраля, 2023 12:55

Двуликие наноструктуры помогут в производстве зеленого водорода

Российские физики изучили новый катализатор для расщепления воды на кислород и водород. Материал представляет собой монослойный кристаллический полупроводник на основе молибдена, серы, селена и теллура. Компьютерное моделирование установило, что при добавлении в воду катализатора и воздействии на нее солнечным светом выход водорода составит до 67%. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы в International Journal of Hydrogen Energy.
Вид сверху и сбоку на атомную структуру Януса, изученную авторами статьи. Источник: Sukhanova et al. / Int. J. Hydrog. Energy, 2023
В 1970-х годах японские ученые уже проводили исследования процесса расщепления воды под воздействием солнечного света. Для ускорения реакции тогда использовали полупроводниковые катализаторы на основе диоксидов титана, но они показали низкую эффективность. Гораздо интереснее показались катализаторы на основе дихалькогенидов переходных металлов из-за своей стабильности и разнообразия структур и химических составов. Особенно востребованными для расщепления воды оказались монослои с наноструктурой Януса. Они названы так, потому что верхний и нижний ряды атомов в них состоят из разных элементов, то есть они двулики подобно богу из древнеримской мифологии. Эта особенность монослоев Януса позволяет ускорять реакцию разложения воды при воздействии света.

Физики из Института биохимической физики имени Н. М. Эмануэля РАН (Москва) вместе с коллегами исследовали новый катализатор, где использованы свойства Янус-структур для получения водорода из воды. Ученые взяли соединения на основе серы, молибдена, селена и теллура для проведения компьютерного моделирования фотокалитических реакций в присутствии монослойных кристаллических полупроводников с Янус-структурой. Наиболее перспективным кандидатом для производства солнечного водорода оказался материал на основе соединения SMoTe (где S — сера, Mo — молибден, а Te — теллур). Прогнозируемая эффективность преобразования солнечной энергии в водород составила 54% и 67,1% для нейтральной и кислой сред соответственно, что существенно превышает общепринятый предел для коммерциализации, равный 18%. Другие соединения (SMoSe, SMoO, SeMoO и SeMoTe, O — кислород), использованные авторами статьи в теоретических расчетах, также подходят для выделения водорода из воды с эффективностью выше указанного предела и могут быть использованы в разных средах (либо в нейтральных, либо в кислых в зависимости от химического состава соединения).

Несмотря на то, что работа ученых основана на предсказанных данных, результаты могут быть использованы на практике. Сегодня это особенно актуально, поскольку популярны разработки в области зеленой энергетики, в будущем способной хотя бы частично заменить традиционную на ископаемых источниках энергии и тем самым уменьшить углеродный след человечества. Промышленные компании уже проявляют интерес к более экологичному возобновляемому виду топлива, причем его использование возможно по всей планете, а не только в регионах с большим количеством солнечных дней в году, считают авторы статьи.
«Расщепление воды под воздействием солнечного света представляет практический интерес, поскольку использование полученного таким образом водорода может сократить выбросы парниковых газов, удовлетворить растущий глобальный спрос на энергию, а также решить проблемы, связанные с устойчивым энергоснабжением по всему миру. В своей работе мы показали, что семейство катализаторов, которые мы изучили, содержат новые динамически устойчивые структуры с выдающимися свойствами для практического применения», — рассказывает руководитель проекта Захар Попов, кандидат физико-математических наук, старший научный сотрудник ИБХФ РАН.
В работе также приняли участие исследователи Института геологии и минералогии СО РАН (Новосибирск), Института физики имени Л. В. Киренского СО РАН (Красноярск) и Сибирского федерального университета (Красноярск) и Новосибирского государственного университета (Новосибирск).

Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ
27 марта, 2024
«Узоры» на кристаллах сделали кремниевый фотодетектор в два раза чувствительнее к свету
Ученые описали этапы формирования объемного «рисунка» на поверхности кристаллического кремния под ...
26 марта, 2024
Биологи научились определять стратегии «маскировки» клеток рака легкого, яичника и колоректального рака от химиотерапии
Ученые выяснили, что клетки рака легкого и рака яичника становятся устойчивыми к цисплатину — одно...