Новости

28 июля, 2020 12:20

Материалы из продуктов нефтепереработки могут вдвое ускорить передачу сигналов в микрочипах

Ученые Института нефтехимического синтеза имени А. В. Топчиева РАН определили диэлектрические свойства полимеров из продуктов нефтехимии и выяснили, какие из них потенциально можно применить как изолирующие и защитные слои в микроэлектронике. Некоторые из исследованных материалов могут более чем в два раза ускорить передачу сигналов в микрочипах — основе современных процессоров. Результаты исследования опубликованы в журнале Polymer. Работа поддержана грантом Российского научного фонда.
Коллектив ИНХС РАН, участвовавший в работе над статьей. Источник: Глеб Карпов/ ИНХС

«На сегодняшний день имеются лишь отрывочные сведения о диэлектрических свойствах полинорборненов. Наше исследование — это, по сути, первая попытка оценить влияние химической структуры полинорборненов на их диэлектрические свойства, — говорит Глеб Карпов, младший научный сотрудник лаборатории кремнийорганических и углеводородных циклических соединений Института нефтехимического синтеза имени А. В. Топчиева РАН. — Пока что нельзя сказать, что у нас есть полимер с лучшим набором характеристик для микроэлектроники — у изученных материалов есть свои недостатки. Однако теперь можно прогнозировать, какие полинорборнены подойдут под требования отрасли».

Кроме разных видов топлива, в результате переработки нефти получают пластики, полиэтилен, красящие вещества, ткани и другие востребованные продукты. В перспективе нефтепереработка может дать и новые материалы с уникальными, пока не достигнутыми свойствами. Например, из полимеров на основе распространенного углеводорода норборнена можно получить и мембраны для разделения смесей газов, и прочные наполнители для композитов, и прозрачные пленки для оптики. Норборнен привлекает химиков, так как производится из доступного сырья, а полимеры из него устойчивы к воздействию высоких температур и могут использоваться как диэлектрики.

Применение материалов с такими свойствами, как у полинорборненов, позволит увеличить скорость работы и производительность микрочипов во всей микроэлектронике — от смартфонов и компьютеров до систем управления атомными электростанциями. Но чтобы целенаправленно придавать материалу нужные характеристики, нужно понимать, как они связаны со структурой и составом полимера. На полинорборненах изучать такие закономерности удобно: особенности молекул мономера позволяют не только формировать полимерные цепи, но и присоединять разнообразные группы атомов. Химический состав этих групп-заместителей меняет структуру полимерной цепи и возможности применения материала.

Химики из Института нефтехимического синтеза имени А. В. Топчиева РАН (Москва) исследовали, какие составы и структуры полинорборненов делают их оптимальными диэлектриками. Для эксперимента ученые синтезировали по собственным методикам восемь разных полимеров. Половина из них состоит в основном из атомов углерода, водорода и кремния (последний включается в полимерную цепь в составе боковых заместителей), а другая группа полимеров содержит фтор. Для измерения диэлектрических свойств из полинорборненов сделали тонкие пленки: материалы растворили в толуоле, а затем высушили смесь. Главный исследованный показатель — относительная диэлектрическая проницаемость. Она характеризует силу взаимодействия между двумя электрическими зарядами в анализируемом веществе относительно вакуума. При воздействии электрического поля в полимере возникает поляризация — смещение положительных и отрицательных зарядов в противоположных направлениях, которое может приводить к появлению электропроводности. Чем меньше проявляется поляризация, тем ниже диэлектрическая проницаемость и лучше изоляционные свойства материала, а также выше скорость передачи сигнала в устройстве.

Ученые помещали диски из полимерных пленок в электрическое поле при температурах от -100 до +100 °C. Оказалось, что у синтезированных российскими химиками полинорборненов самая низкая диэлектрическая проницаемость среди всех исследованных полимеров группы. Самое малое из найденных значений — 1,94. Для сравнения, у диоксида кремния, который применяется в микроэлектронике, значение этой величины находится в районе 4,0. Это значит, что использование полинорборнена вместо диоксида кремния позволит увеличить скорость передачи сигнала более чем в два раза.

Чтобы определить, с чем связана такая низкая диэлектрическая проницаемость, ученые исследовали другие характеристики полимеров. К примеру, известно, что чем больше объем пустого пространства внутри пористых материалов, тем интереснее диэлектрические свойства. Объем пор оценили по поглощению материалами азота. Оказалось, для материалов без добавления фтора диэлектрическая проницаемость действительно связана с объемом пористого пространства: самое высокое ее значение обнаружено у материала с 15% пустого пространства в образце, а самое низкое — с 30%. Для материалов с фтором ученые нашли другую зависимость: диэлектрическая проницаемость уменьшается при увеличении количества фтора в образце. Кроме того, исследователи сравнили механические свойства полимеров, их устойчивость к нагреванию и способность поглощать воду. Все образцы оказались гидрофобными и показали устойчивость к высоким температурам, что делает их перспективными материалами для микроэлектроники.

В работе также участвовали исследователи из Первого МГМУ имени И. М. Сеченова, Института физики Казанского федерального университета и Института химической физики имени Н. Н. Семенова РАН.

21 марта, 2025
Цветные нанометки помогут уберечь ценное промышленное оборудование от подделки
Ученые разработали подход, позволяющий наносить лазером на поверхности специальных покрытий нанора...
20 марта, 2025
Искусственные почвенные смеси в арктических городах помогут уменьшить парниковый эффект
Ученые выяснили, что техносоли — искусственные почвенные смеси, используемые для создания городски...