Новости

5 октября, 2022 12:08

Петли на ДНК защитили клетки от мутаций

Российские ученые определили структуру петель, образующихся на ДНК во время считывания генов, и выяснили, что они позволяют клетке найти и обезвредить разрывы в нуклеотидных цепях. Понимание механизмов, защищающих клетку от повреждения наследственного материала, может оказаться полезным для разработки лекарств от тяжелых заболеваний, в том числе рака. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Cells.
Механизм, объясняющий блокировку движения РНК-полимеразы вдоль цепи ДНК в случае одноцепочечного разрыва. Более компактная петля, образующаяся в случае одноцепочечного разрыва (справа), приводит к остановке РНК-полимеразы. Источник: Gerasimova et al. / Ce
Молекула ДНК состоит из двух цепей. Под действием неблагоприятных внешних воздействий, например ультрафиолета или канцерогенных веществ, одна из цепей может разорваться. Кроме того, в норме брешь в цепи образуется при клеточном делении, когда ДНК копируется. Ежедневно в клетках человека под действием внешних воздействий и внутренних процессов происходит от десяти до ста тысяч таких разрывов. Большая их часть исправляется с помощью специальных белков — так называемой системы репарации, которая помогает «залатать» бреши в молекуле ДНК. Для функционирования клетки важно, чтобы подобные одноцепочечные разрывы были вовремя устранены, иначе могут произойти и двухцепочечные разрывы. Они приводят к встраиванию или выпадению небольших фрагментов последовательности, то есть вызывают мутации. Это чревато либо гибелью клетки, либо провоцирует ее злокачественное перерождение.

Клетка распознает некоторые одноцепочечные разрывы с помощью ферментов, двигающихся вдоль нити ДНК. Например, во время транскрипции, то есть считывания генетического материала, фермент РНК-полимераза «ползет» вдоль одной из цепей ДНК и синтезирует РНК — молекулу, на которой потом рибосомы собирают белок. Известно, что, если на ДНК встречается одноцепочечный разрыв, продвижение РНК-полимеразы прекращается.

Застопорившийся фермент служит указателем на ошибку — он привлекает систему репарации, которая ее исправляет. Однако РНК-полимераза всегда двигается только по одной из двух нитей ДНК — той, которая кодирует ген (она называется смысловой). Вторая цепь — антисмысловая — не кодирует гены, а служит только для копирования молекулы ДНК в ходе деления клетки. Долгое время оставался необъяснимым вопрос — как же система репарации может узнать разрыв на второй цепи ДНК, если РНК-полимераза ее не считывает.

Ученые из Московского государственного университета имени М. В. Ломоносова (Москва) и Института биоорганической химии имени академиков М. М. Шемякина и Ю. А. Овчинникова РАН (Москва) совместно с коллегами из Университета МГУ-ППИ в Шэньчжэне (Китай), Медицинской школы Рутгерса Роберта Вуда Джонсона (США) и центра исследования рака Фокс Чейз (США) выяснили, как клетка находит одноцепочечные разрывы на антисмысловой цепи ДНК. Для этого авторы с помощью электронной микроскопии, биохимических методов и молекулярного моделирования изучили укладку нуклеиновой кислоты в месте, где происходит считывание генетической информации. В этой области образуются особые петли длиной 55 пар нуклеотидов (элементарных звеньев нуклеиновой цепочки), располагающиеся между нуклеосомой (белковой структурой, на которую намотана ДНК) и РНК-полимеразой. Исследовав структуру этих петель, ученые выяснили, что их геометрия сильно изменяется, если в антисмысловой цепи ДНК есть одноцепочечный разрыв — в этом случае уменьшается расстояние между нуклеосомой и РНК-полимеразой.



А. Электронно-микроскопические изображения комплексов РНК-полимеразы с нуклеосомой. В случае двухцепочечного разрыва (снизу) расстояние между нуклеосомой и РНК-полимеразой оказывается существенно меньше, чем в случае неповрежденной ДНК (сверху). B. Диаграмма, показывающая расстояние между нуклеосомой и РНК-полимеразой для случая поврежденной (слева) и целой (справа) ДНК. C и D. 3D-модели петли, образующейся при считывании гена для ДНК без разрыва (слева) и ДНК, содержащей разрыв на одной из цепей (справа). Источник: Gerasimova et al. / Cells, 2022

Полученные данные легли в основу модели, объясняющей, каким образом клетка обнаруживает разрыв на антисмысловой цепи и блокирует движение РНК-полимеразы вдоль нити ДНК. Согласно этой модели, когда фермент перемещается по цепи ДНК, позади и впереди нее формируются петли; в норме они должны открываться, чтобы обеспечить дальнейшее продвижение РНК-полимеразы вдоль цепи. Если в антисмысловой цепи ДНК за ферментом находится одноцепочечный разрыв, петля оперативно закрывается, что может вызывать остановку движения полимеразы. Таким образом, петли служат сенсорами разрывов в антисмысловой цепи. Благодаря этому в клетках предотвращается считывание поврежденных участков генов и начинается процесс исправления ошибок с помощью системы репарации.
«Мы открыли новый механизм, с помощью которого клетка может находить разрывы в ДНК, — рассказывает Ольга Соколова, доктор биологических наук, профессор биологического факультета МГУ, профессор РАН. — Понимание этого механизма имеет большое значение для фундаментальной науки: повреждение ДНК ведет к накоплению мутаций, и, как следствие, смерти или нарушению работы клетки. Это способствует развитию различных заболеваний, в том числе онкологических и нейродегенеративных».
Выявление ранее неизвестного механизма того, как обнаруживаются разрывы в ДНК, открывает новые перспективы для разработки методов лечения, которые предполагают повышение стабильности ДНК-петель. С другой стороны, оно может послужить отправной точкой для создания терапевтических препаратов, нацеленных на снижение стабильности петель ДНК. Такие вещества могли бы лечь в основу создания лекарственных средств, вызывающих программируемую смерть раковых клеток или клеток, пораженных вирусами.
24 ноября, 2022
Новая модель позволит предсказать вымирания видов при глобальном потеплении
Российские ученые предложили математическую теорию, описывающую сложные взаимодействия между климато...
18 ноября, 2022
Слой из полимера защитит аккумуляторы от самовозгорания
Российские ученые разработали новый тип защитного слоя для литий-ионных батарей, который снижает т...