Схема нанесения светопоглощающих слоев на стальную подложку. Источник: Shevlyagin et al. / Materials, 2022
Физики проанализировали микроструктуру поверхности и оптические свойства полученных образцов на разных этапах создания фотоэлемента. Так, текстурированная сталь имела высокую шероховатость с большим количеством впадин и возвышений. При этом она отражала всего 7% падающего света, а остальной поглощала, что позволило ее использовать для дальнейшего нанесения светопоглощающих слоев. После напыления кремния и силицида магния отражение от поверхности образцов увеличилось до 16%. Чтобы компенсировать эти потери и улучшить преобразование энергии света в электричество, ученые использовали полупрозрачный слой из дисилицида кальция, который так же, как и стальная подложка, служил одним из электрических контактов солнечного элемента. В результате светопоглощающие слои оказались между двумя электродами — текстурированной сталью с одной стороны и дисилицидом кальция с другой. Проведя тесты при освещении, авторы определили, что эффективность полученного солнечного элемента составляет 7,5%.«Это можно назвать хорошим результатом, учитывая, что наша разработка более экономически выгодна, чем другие солнечные элементы, поскольку в ней используются дешевые и доступные материалы. В дальнейшем мы планируем оптимизировать фотоэлементы, подобрав оптимальную толщину входящих в них слоев и их легирование, то есть состав примесей», — рассказывает руководитель проекта, поддержанного грантом РНФ, Александр Шевлягин, кандидат физико-математических наук, старший научный сотрудник лаборатории оптики и электрофизики Института автоматики и процессов управления ДВО РАН.