Новости

5 сентября, 2023 12:15

Светящиеся наночастицы расскажут о температуре в открытом космосе

Ученые разработали способ бесконтактного измерения сверхнизких температур до -253°C с точностью до десятой доли градуса. Для этого исследователи использовали наночастицы, светящиеся в инфракрасном диапазоне. С помощью предложенной методики по соотношению интенсивностей полос этого свечения можно определять точную температуру, в том числе в открытом космосе. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Journal of Materials Chemistry С.
Калиничев Алексей Андреевич — инженер ресурсного центра «Оптические и лазерные методы исследования вещества» СПбГУ. Источник: Илья Колесников

Часто температуру не получается измерить контактным способом: в наноэлектронике (например, в чипе процессора), в биомедицине (в определенном органе или ткани внутри тела), в труднодоступных местах, например, в космосе или в жерле вулкана. В таких случаях помогает бесконтактная термометрия с использованием люминофоров — материалов, которые поглощают свет и испускают собственное свечение. Их можно сравнить с люминесцентными браслетами на вечеринках, которые сначала «накапливают» свет, а потом светятся в темноте. Спектральные характеристики этих люминесцентных частиц напрямую зависят от температуры окружающей среды, что позволяет точно ее измерить. Однако, если температура очень низкая — порядка сотен градусов ниже нуля, — изменения в спектрах большинства люминофоров становятся практически незаметными. Поэтому, чтобы измерять сверхнизкие температуры, нужно найти такие люминофоры, спектр свечения которых существенно изменяется в этом температурном диапазоне.

Ученые из Санкт-Петербургского государственного университета и Санкт-Петербургского политехнического университета Петра Великого (Санкт-Петербург) предложили использовать оксидные наночастицы, активированные редкоземельными ионами неодима, в качестве люминесцентного термометра для измерения сверхнизких температур. Авторы научились определять температуру по соотношению интенсивностей полос люминесценции ионов неодима. Этот параметр показывает, как изменяется населенность электронных уровней этого химического элемента при различной температуре.


Метод люминесцентной термометрии позволяет измерять температуру до -253°C. Источник: Илья Колесников

Дело в том, что при помещении ионов неодима в электрическое поле энергетические уровни этого элемента расщепляются на несколько подуровней, которые называются Штарковскими. Переходы электронов между этими подуровнями приводят к значительным изменениям спектра люминесценции иона, что позволяет использовать неодим для измерения сверхнизких температур.

Ученые создали взвесь из изопропилового спирта и порошка с наночастицами, активированными ионами неодима, и кисточкой нанесли ее на объект, температуру которого хотели измерить. Изопропиловый спирт быстро улетучился, и на поверхности остались только наночастицы. Их облучили невидимым для человека инфракрасным светом, в ответ на который частицы начали самостоятельно испускать инфракрасный свет. Это излучение авторы улавливали с помощью детекторов. Физики измерили спектры и рассчитали соотношение интенсивностей выбранных полос излучения при разных температурах. По нему создали график соответствия, на основе которого можно определить температуру до -253°C точностью до десятой доли градуса. Несмотря на то, что для первоначального нанесения наночастиц на поверхность интересующего объекта нужен непосредственный контакт с ним, для последующих измерений температуры он не требуется: температура оценивается «дистанционно», только по излучению.

Такой метод бесконтактного измерения температуры может применяться для проведения исследований в области низкотемпературных сверхпроводников. Также подход может использоваться в космических исследованиях, поскольку температуры в космосе очень низкие, и их нельзя точно измерить привычным способом. В этом случае частицы люминофора предлагается наносить на элементы обшивки космического корабля еще на Земле, чтобы затем в космосе с их помощью проводить измерения.


Колесников Илья Евгеньевич, руководитель проекта, доктор физико-математических наук, специалист ресурсного центра «Оптические и лазерные методы исследования вещества» СПбГУ. Источник: Илья Колесников.

«Наша дальнейшая цель — расширить шкалу до еще более низких температур, чтобы охватить как можно больше объектов и явлений, например в космической области. Важная ближайшая задача — дойти до -268°C, то есть температуры жидкого гелия. Кроме того, мы стремимся улучшить термометрические характеристики предлагаемых люминофоров, а именно тепловую чувствительность и температурное разрешение. Для этого мы будем искать новые соединения, активированные неодимом или другими редкоземельными ионами, которые позволят увеличить точность метода», — рассказывает руководитель проекта, поддержанного грантом РНФ, Илья Колесников, доктор физико-математических наук, специалист по спектрофлуориметрии, специалист ресурсного центра «Оптические и лазерные методы исследования вещества» СПбГУ.
Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ
18 июля, 2024
Чувствительный к летучим соединениям молока «электронный нос» с 83% точностью оценил количество бактерий в продукте
Ученые создали датчик, который, подобно человеческому носу, улавливает летучие соединения, содержа...
18 июля, 2024
Кристаллографы СПбГУ расшифровали структуру минерала, открытого более 70 лет назад
Международная группа ученых под руководством кристаллографа Санкт-Петербургского государственного ун...