Углеродное волокно, или просто углеволокно, состоит из тонких нитей аморфного углерода и известно своей прочностью, легкостью, отсутствием теплового расширения и химической устойчивостью. Это делает его перспективной основой для авиационных и космических материалов. Как правило, оно используется для армирования пластиковой матрицы в углепластиковых композитах. Однако многие силовые узлы летательных аппаратов нельзя сделать из этого материала из-за его низкой трещиностойкости —тогда хрупкий пластик можно заменить на легкий и пластичный алюминий или его сплав.
«Кроме волокна и матрицы вклад в механические свойства композита вносит также граница их раздела. Если прочность связи между ними будет слишком высокой, распространению трещины в таком материале ничто не помешает, в результате он разрушится преждевременно. В своей работе мы предложили новый подход к ослаблению границы раздела за счет подбора материала матрицы. По сравнению с другими используемыми для этого методами наш способ оказался намного эффективнее, проще и дешевле. Надеюсь, это позволит нам в кратчайшие сроки реализовать его в готовом изделии», — рассказывает руководитель проекта РНФ Сергей Галышев, кандидат технических наук, старший научный сотрудник Института физики твердого тела имени Ю. А. Осипьяна РАН.
Исследователи из ИФТТ РАН и Института структурной макрокинетики и проблем материаловедения имени А. Г. Мержанова РАН (Черноголовка) проанализировали, какие вещества можно добавить в алюминий так, чтобы связь между матрицей и волокном была менее прочной, чем в случае использования чистого алюминия. Выбор пал на олово — оно хорошо смешивается с алюминием в жидкой фазе, но не образует с ним новых соединений, равно как и с углеродом (даже в процессе изготовления композита при температуре выше 600°С). Авторы измеряли механические характеристики материалов с разным содержанием олова в матрице, его максимальная концентрация составляла 50 атомных процентов (для их расчета используют не массу, а число атомов).
Оказалось, что свойства композита с увеличением количества олова изменялись почти линейно: прочность матрицы и границы раздела уменьшалась, но при этом росла величина прочности всего материала от 1450 МПа до 2365 МПа (для сравнения — самые прочные алюминиевые сплавы имеют прочность не более 850 МПа). Такая зависимость объясняется более равномерным распределением нагрузки на волокно и меньшей концентрацией напряжений на конце возможной трещины. Другими словами, это можно объяснить тем, что слабая граница является своего рода механическим предохранителем распространения трещины. Последняя доходит до места соприкосновения компонентов композита, но идет не по начальной траектории, а по границе. Смена направления требует затрат энергии, и дальнейшее распространение трещины оказывается невыгодным системе.
«Мы полагаем, что с помощью легирования матрицы оловом и другими элементами можно и дальше повышать прочность углеалюминиевого композита, что наша группа и собирается проверить в ближайших экспериментах. К тому есть немало предпосылок, например, самый прочный образец, который нам удалось получить на сегодняшний день, имеет прочность почти 3000 МПа», — подводит итог Олег Аверичев, кандидат технических наук, научный сотрудник ИСМАН РАН.