КАРТОЧКА ПРОЕКТА ФУНДАМЕНТАЛЬНЫХ И ПОИСКОВЫХ НАУЧНЫХ ИССЛЕДОВАНИЙ,
ПОДДЕРЖАННОГО РОССИЙСКИМ НАУЧНЫМ ФОНДОМ
Информация подготовлена на основании данных из Информационно-аналитической системы РНФ, содержательная часть представлена в авторской редакции. Все права принадлежат авторам, использование или перепечатка материалов допустима только с предварительного согласия авторов.
ОБЩИЕ СВЕДЕНИЯ
Номер проекта 23-71-30001
НазваниеНовые направления в теории приближений и обработка больших данных
Руководитель Темляков Владимир Николаевич, Доктор физико-математических наук
Организация финансирования, регион Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени M.В.Ломоносова» , г Москва
Конкурс №81 - Конкурс 2023 года по мероприятию «Проведение исследований научными лабораториями мирового уровня в рамках реализации приоритетов научно-технологического развития Российской Федерации» Президентской программы исследовательских проектов, реализуемых ведущими учеными, в том числе молодыми учеными
Область знания, основной код классификатора 01 - Математика, информатика и науки о системах; 01-109 - Вещественный и функциональный анализ
Ключевые слова жадная аппроксимация, нелинейная аппроксимация, многомерная аппроксимация, разреженные приближения, сжатые измерения, жадные алгоритмы, дискретизация, оптимальное восстановление, большие данные, теория обучения, глубокое обучение, колмогоровский поперечник, случайные ряды Дирихле, равномерная сходимость, случайные ряды Дирихле, равномерная сходимость
Код ГРНТИ27.25.00
ИНФОРМАЦИЯ ИЗ ЗАЯВКИ
Аннотация
Наша цель - провести теоретическое исследование фундаментальных методов, используемых в разреженном представлении данных, и разработать теорию разреженного представления, широко применяемую в работе с большими данными. Проект включает в себя исследования в следующих областях современной математики: жадная аппроксимация и оптимизация, многомерная аппроксимация, дискретизация и теория обучения, в их естественной взаимосвязи, с целью построения практических алгоритмов обработки больших данных.
Жадные приближения. Мы планируем разработать и проанализировать новые алгоритмы жадного типа. Сходимость, скорость сходимости и устойчивость этих алгоритмов будут изучаться в произвольных банаховых пространствах. Мы планируем найти классы словарей, для которых известные общие характеристики сходимости жадных алгоритмов могут быть улучшены или распространены на более широкие классы пространств. Также планируется получить эффективный алгоритм построения глубокой нейронной сети, аппроксимирующей заданную функцию.
Многомерная аппроксимация. Мы планируем: получить новые оценки поперечников функциональных классов; исследовать применение теории поперечников к оценке жесткости матриц в теоретической информатике; изучать гридж-аппроксимацию и соответствующие свойства ридж-функций; изучать приближения функций многомерными системами Хаара и многомерными B-сплайнами и изучить смежные вопросы о структуре самоподобных множеств; изучать аппроксимацию тензоров из разных классов тензорами малого ранга. При исследовании всех этих задач будут систематически использоваться приемы и идеи жадных алгоритмов.
Дискретизация. Мы планируем: установить связи между численным интегрированием, дискрепансом, дисперсией и универсальной дискретизацией; получить новые результаты о дискретизации интегральных норм функций из заданного конечномерного подпространства и изучить связанные с этим вопросы о поведении энтропийных чисел классов функций с ограниченными интегральными нормами. С помощью техники жадной аппроксимации мы планируем показать возможность эффективного численного интегрирования в некоторых классах функций без каких либо предположений об их гладкости. Также планируется получить новые оценки дискрепанса при фиксированном объеме.
Теория обучения. Подчеркнём важность теоретических исследований в этом направлении, отметив, что некоторые теоретические результаты, полученные участниками проекта, реализуются на практике ведущими западными компаниями. В первую очередь имеется в виду использование «представления Кашина» в задачах «распределённого обучения». Популярность алгоритмов обучения связана с их эмпирическим успехом при решении некоторых сложных задач теории обучения (компьютерные шахматы/го, автономная навигация, распознавание лиц). Большинство учёных сходятся во мнении, что убедительного теоретического объяснения этого успеха до сих пор нет. Мы надеемся, что использование жадных алгоритмов, применяемых нами ранее, позволит нам построить доказуемо хорошие алгоритмы для аппроксимации нейронными сетями.
Лаборатория «Многомерная аппроксимация и приложения» МГУ имени М.В. Ломоносова, возглавляемая профессором В.Н.Темляковым, обладает уникальным набором специалистов мирового уровня и может обеспечить прорывные исследования в вышеуказанных областях с целью построения общей теории разреженного представления больших данных и разработки новых высокопроизводительных алгоритмов их сжатия и анализа. Результаты проекта могут быть использованы для создания информационных систем сбора, обработки и хранения больших данных, включая геоинформационные, геномные, промышленные и финансовые данные. Также они могут быть использованы для построения и обучения нейронных сетей, предназначенных для анализа и обработки цифровых видео и аудио сигналов, для распознавания изображений, а также для сбора и упорядочивания других больших данных, возникающих в прикладных задачах моделирования физических и социально-экономических процессов.
ОТЧЁТНЫЕ МАТЕРИАЛЫ
Публикации
1.
Темляков В.Н.
On the Rate of Convergence of Greedy Algorithm
Mathematics, Volume 11, Issue 11, 2559 (год публикации - 2023)
10.3390/math11112559
2.
Асташкин С.В.
On Various Notions of Representability of l_r-Spaces in Orlicz Function Spaces
Mathematical Notes, Volume 114, Issue 3, pp. 403-406 (год публикации - 2023)
10.1134/S0001434623090110
3.
Макаров М.С.
Antinorms and Self-Polar Polyhedra
Siberian Mathematical Journal, Volume 64, Issue 5, pp. 1200-1212 (год публикации - 2023)
10.1134/S0037446623050129
4.
Тюленев А.И.
Traces of Sobolev Spaces on Piecewise Ahlfors–David Regular Sets
Mathematical Notes, Volume 114, Issue 3, pp. 351-376 (год публикации - 2023)
10.1134/S0001434623090079
5.
Иванов В.И.
Недеформированное обобщенное преобразование Данкля на прямой
Математические заметки, Том 114, Выпуск 4, С. 509–524 (год публикации - 2023)
10.4213/mzm14021
6.
Асташкин С.В.
On Subspaces of an Orlicz Space Spanned by Independent Identically Distributed Functions
Doklady Mathematics, Volume 108, Issue 1, pp. 297-299 (год публикации - 2023)
10.1134/S1064562423700801
7.
Терехин П.А.
Орторекурсивные разложения, порожденные ядром Сеге
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, Том 23, Выпуск 4, С. 443-455 (год публикации - 2023)
10.18500/1816-9791-2023-23-4-443-455
8.
Бородин П.А., Шкляев К.С.
Плотность квантованных приближений
Успехи математических наук, Том 78, Выпуск 5(473), С. 3-64 (год публикации - 2023)
10.4213/rm10115
9.
Лимонова И.В.
Плотные слабо лакунарные подсистемы ортогональных систем и оператор мажоранты частных сумм
Математический сборник, Том 214, Выпуск 11, С. 63-88 (год публикации - 2023)
10.4213/sm9929
10.
Скворцов Ю.А.
О существовании элемента с заданными уклонениями от расширяющейся системы подпространств
Математические заметки, Том 114, Выпуск 5, С. 780-788 (год публикации - 2023)
10.4213/mzm13982
11.
Иванов В.И.
Оператор сплетения для обобщенного преобразования Данкля на прямой
Чебышевский сборник, Том 24, Выпуск 4, С. 108-122 (год публикации - 2023)
10.22405/2226-8383-2023-24-4-108-122
12.
Темляков В.Н.
On Universal Sampling Recovery in the Uniform Norm
Proceedings of the Steklov Institute of Mathematics, Volume 323, Pages 206-216 (год публикации - 2023)
10.1134/S0081543823050139
13.
Темляков В.Н.
Разреженное восстановление в некоторых функциональных классах в интегральных нормах
Математический сборник, Том 215, Номер 10, С. 146-166 (год публикации - 2024)
10.4213/sm10086
14.
Косов Е.Д., Темляков В.Н.
Sampling discretization of the uniform norm and applications
Journal of Mathematical Analysis and Applications, Volume 538, Issue 2, 128431 , 25 pp. (год публикации - 2024)
10.1016/j.jmaa.2024.128431
15.
Лимонова И.В., Малыхин Ю.В., Темляков В.Н.
Односторонние неравенства дискретизации и восстановление по выборке
Успехи математических наук, Том 79, Выпуск 3(477), С. 149-180 (год публикации - 2024)
10.4213/rm10175
16.
Асташкин С.В., Лыков К.В.
Об одном свойстве кратной системы Радемахера и его применении к задачам об уклонении в графах
Успехи математических наук, Том 79, Выпуск 4(478), С. 173–174 (год публикации - 2024)
10.4213/rm10185
17.
Асташкин С.В.
Последовательности независимых функций и структура симметричных пространств
Успехи математических наук, Том 79, Выпуск 3(477), 3–92 (год публикации - 2024)
10.4213/rm10171
18.
Шкляев К.С.
О локально чебышевских множествах
Математические заметки, Том 115, Выпуск 4, С. 626–633 (год публикации - 2024)
10.4213/mzm13817
19.
Бородин П.А., Ершов А.М.
Задача С. Р. Насырова о приближении наипростейшими дробями на отрезке
Математические заметки, Том 115, Выпуск 4, С. 568–577 (год публикации - 2024)
10.4213/mzm14108
20. Бородин П.А., Копецка Е. Convergence of remote projections onto convex sets Pure and Applied Functional Analysis, Volume 8, Number 6, Pages 1603-1620 (год публикации - 2023)
21.
Бородин П.А., Савинова Е.А.
Всякая чебышевская кривая без самопересечений монотонна
Математические заметки, Том 116, Выпуск 2, С. 321–323 (год публикации - 2024)
10.4213/mzm14311
22.
Темляков В.Н.
Скорость сходимости пороговых жадных алгоритмов
Математический сборник, Том 215, Номер 2, С. 147-162 (год публикации - 2024)
10.4213/sm9926
23.
Горбачев Д.В., Солодов А.П.
New Conditions for the Convergence of a Weak Greedy Algorithm
Mathematical Notes, Volume 116, Issue 3, Pages 566–570 (год публикации - 2024)
10.1134/S0001434624090165
24.
Асташкин С.В.
On embeddings in the intersection X ∩ L∞
Banach Journal of Mathematical Analysis, Volume 18, Article number 75 (год публикации - 2024)
10.1007/s43037-024-00380-8
25.
Асташкин С.В.
О подпространствах пространств Орлича, порожденных независимыми копиями в среднем равной нулю функции
Известия РАН. Серия математическая, Том 88, Выпуск 4, С. 3–30 (год публикации - 2024)
10.4213/im9531
26.
Асташкин С.В.
Об изоморфных вложениях в классе дизъюнктно однородных перестановочно инвариантных пространств
Сибирский математический журнал, Том 65, Номер 3, С. 435–445 (год публикации - 2024)
10.33048/smzh.2024.65.301
27.
Иванов В.И.
Обобщенное одномерное преобразование Данкля в прямых задачах теории приближений
Математические заметки, Том 116, Выпуск 2, С. 245–260 (год публикации - 2024)
10.4213/mzm14358
28.
Иванов В.И.
Обобщенное преобразование Данкля на прямой в обратных задачах теории приближений
Чебышевский сборник, Том 25, Выпуск 2, С. 67-81 (год публикации - 2024)
10.22405/2226-8383-2024-25-2-67-81
29.
Горбачев Д.В.
Многомерные весовые неравенства для целых функций экспоненциального типа
Математические заметки, Том 116, Выпуск 5, С. 809–813 (год публикации - 2024)
10.4213/mzm14393
30.
Кашина А.Д., Плотников М.Г.
Восстановление функций из p-ичных классов типа Соболева и Коробова с малыми параметрами гладкости
Математические заметки, Том 116, Выпуск 5, С. 744–758 (год публикации - 2024)
10.4213/mzm14208
31.
Попов А.Ю., Солодов А.П.
Распространение оценки снизу С.А. Теляковского суммы синус-ряда с выпуклой последовательностью коэффициентов на более длинный отрезок
Вестник Московского университета. Серия 1: Математика. Механика, Номер 4, С. 26–32 (год публикации - 2024)
10.55959/MSU0579-9368-1-65-4-4
32.
Терехин П.А.
Frames for Hilbert spaces with respect to l^1-sum of finite-dimensional spaces
Poincare Journal of Analysis and Applications, Volume 10, No. 3, Special issue, Pages 19-25 (год публикации - 2023)
10.46753/pjaa.2023.v010i03.002
Аннотация результатов, полученных в 2024 году
Продолжен анализ свойств аппроксимации и восстановления по системам (словарям), удовлетворяющим условию универсальной дискретизации по значениям в точках и специальному условию безусловности. Изучены функциональные классы, которые определяются условиями на коэффициенты разложения функций по заданной системе функций. Условия сформулированы в виде неравенств на суммы абсолютных величин коэффициентов, когда суммирование ведется по областям, которые являются разностями двух двоичных кубов.
Установлено, что алгоритм слабого ортогонального преследования (АСОП), основанный на точках, которые дают хорошую универсальную дискретизацию квадратичной нормы, обеспечивает хорошее восстановление в других интегральных нормах. Для алгоритма АСОП и других алгоритмов восстановления получены как неравенства Лебега для индивидуальных функций, так и оценки ошибок для специальных функциональных классов функций многих переменных. Кроме того, сформулирована задача восстановления для набора новых более общих классов. В частности, все изученные до сих пор классы попадают в этот набор. Для того, чтобы получить новые результаты о восстановлении по значениям в точках, одновременно использовались два глубоких и мощных метода: неравенства типа Лебега для АСОП и теория универсальной дискретизации по значениям в точках.
Получены новые результаты о приближении в различных метриках произвольного плоского электростатического поля на отрезке полем, создаваемым одинаковыми зарядами, расположенными на кривой, содержащей концы указанного отрезка.
Найдены условия, необходимые или достаточные для слабой сходимости последовательных дальних проекций на семейство замкнутых выпуклых множеств в гильбертовом пространстве.
Доказано, что всякая чебышевская кривая без самопересечений в произвольном банаховом пространстве является монотонной.
Доказано, что всякое связное ограниченно компактное локально чебышевское множество в нормированном пространстве является чебышевским.
Доказано, что всякое сепарабельное равномерно дизъюнктно однородное симметричное пространство на [0,1] имеет единственное перестановочно инвариантное представление на [0,1]. Если p>1 и конечно, то L_p[0,1] - единственное равномерно p-дизъюнктно однородное симметричное пространство на [0,1] с нетривиальными индексами Бойда, имеющее в точности два перестановочно инвариантных представления на полуоси.
Установлено, что кратная система Радемахера произвольного порядка обладает свойством случайной безусловной сходимости в пространстве L_\infty. В качестве приложения найдены двусторонние точные по порядку оценки для уклонения весовых реберных двудольных графов.
Доказан аналог теоремы Чебышева об альтернансе для систем линейно независимых дискретных функций на целочисленном интервале. Установлено, что многочлен наилучшего равномерного приближения дискретной функции допускает альтернанс нужной длины тогда и только тогда, когда система является чебышевской в смысле числа дискретных нулей, включающих перемены знака. Получена дискретная версия осцилляционной теоремы Штурма, которая задает точный диапазон для числа дискретных нулей многочлена по собственным функциям дискретной задачи Штурма-Лиувилля. Это утверждение дает примеры дискретных чебышевских систем и позволяет решить дискретную версию теоремы Штурма-Гурвица для функций со спектральным разрывом. Изучены ортогональные многочлены с исключенными наибольшими нулями. Доказано свойство монотонности коэффициентов в разложениях Фурье таких многочленов, что усиливает результаты Кона и Кумара. Эти результаты применены для решения экстремальной задачи типа Юдина для многочленов со спектральным разрывом.
Доказаны точные по порядку неравенства типа Бернштейна и Никольского для целых функций многих переменных экспоненциального типа в пространстве L_p с мерой, удовлетворяющей условию удвоения. Ранее основное внимание уделялось периодическому и одномерному случаям. В основе доказательства лежит ограниченность в L_p с такой мерой максимального оператора, установленная Б. Джауэртом. Приведены примеры мер и дифференциально-разностных операторов из теории Данкля и деформированного преобразования Фурье, для которых справедливы порядковые неравенства Бернштейна и Никольского.
Найдены новые как необходимые, так и достаточные условия сходимости слабого жадного алгоритма в гильбертовом пространстве для произвольного словаря. Эти условия смыкаются для квазимонотонных ослабляющих последовательностей.
Для нескольких семейств подсистем тригонометрической системы функций найдены постоянные А, для которых эти подсистемы являются системами А-единственности. Для двух p-ичных аналогов d-хаосов Радемахера доказана их q-лакунарность и найдены точные константы А, для которых эти системы функций суть системы А-единственности.
Получены оценки на распределение элементов матриц малого ранга, приближающих единичную матрицу.
Доказано, что безусловное N-мерное множество, инвариантное относительно циклических сдвигов координат, не приближается в l_q при q из [1,2] подпространствами размерности существенно меньше N.
Получено достаточное условие на выполнение «простой» формулы для показателя гладкости в L_2 (W_2^k) тайловых B-сплайнов, определенных как кратная свертка индикаторов специальных самоподобных компактов. «Простая» формула обобщает случай изотропного растяжения. Показана оптимальность двухциферных тайловых B-сплайнов по количеству коэффициентов масштабирующего уравнения среди двухциферных масштабирующих функций с заданным порядком аппроксимации.
Доказано существование функций, суммы сдвигов которых плотны в пространствах Лебега и в пространстве непрерывных функций с нулевым средним, когда сдвиги задаются действием компактной группы.
Установлена теорема о двойственности для систем с непрерывным временем, сформулированная только в терминах инвариантных норм. Исследованы системы с множеством управления в виде многогранника, в частности, доказано существование инвариантной нормы Ляпунова для любого многогранника и найден критерий существования у системы инвариантного многогранника для двумерного случая.
За два года реализации проекта опубликовано 32 статьи в ведущих рецензируемых научных изданиях, в том числе 3 обзора.
Члены коллектива участвовали в организации и проведении двух международных конференций: «Аппроксимация, оптимизация и разреженное восстановление» (Сочи, ФТ Сириус, 16–20 сентября 2024); «Комплексный анализ и теория приближений» (Москва, МГУ, 27–28 сентября 2024).
Публикации
1.
Темляков В.Н.
On the Rate of Convergence of Greedy Algorithm
Mathematics, Volume 11, Issue 11, 2559 (год публикации - 2023)
10.3390/math11112559
2.
Асташкин С.В.
On Various Notions of Representability of l_r-Spaces in Orlicz Function Spaces
Mathematical Notes, Volume 114, Issue 3, pp. 403-406 (год публикации - 2023)
10.1134/S0001434623090110
3.
Макаров М.С.
Antinorms and Self-Polar Polyhedra
Siberian Mathematical Journal, Volume 64, Issue 5, pp. 1200-1212 (год публикации - 2023)
10.1134/S0037446623050129
4.
Тюленев А.И.
Traces of Sobolev Spaces on Piecewise Ahlfors–David Regular Sets
Mathematical Notes, Volume 114, Issue 3, pp. 351-376 (год публикации - 2023)
10.1134/S0001434623090079
5.
Иванов В.И.
Недеформированное обобщенное преобразование Данкля на прямой
Математические заметки, Том 114, Выпуск 4, С. 509–524 (год публикации - 2023)
10.4213/mzm14021
6.
Асташкин С.В.
On Subspaces of an Orlicz Space Spanned by Independent Identically Distributed Functions
Doklady Mathematics, Volume 108, Issue 1, pp. 297-299 (год публикации - 2023)
10.1134/S1064562423700801
7.
Терехин П.А.
Орторекурсивные разложения, порожденные ядром Сеге
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, Том 23, Выпуск 4, С. 443-455 (год публикации - 2023)
10.18500/1816-9791-2023-23-4-443-455
8.
Бородин П.А., Шкляев К.С.
Плотность квантованных приближений
Успехи математических наук, Том 78, Выпуск 5(473), С. 3-64 (год публикации - 2023)
10.4213/rm10115
9.
Лимонова И.В.
Плотные слабо лакунарные подсистемы ортогональных систем и оператор мажоранты частных сумм
Математический сборник, Том 214, Выпуск 11, С. 63-88 (год публикации - 2023)
10.4213/sm9929
10.
Скворцов Ю.А.
О существовании элемента с заданными уклонениями от расширяющейся системы подпространств
Математические заметки, Том 114, Выпуск 5, С. 780-788 (год публикации - 2023)
10.4213/mzm13982
11.
Иванов В.И.
Оператор сплетения для обобщенного преобразования Данкля на прямой
Чебышевский сборник, Том 24, Выпуск 4, С. 108-122 (год публикации - 2023)
10.22405/2226-8383-2023-24-4-108-122
12.
Темляков В.Н.
On Universal Sampling Recovery in the Uniform Norm
Proceedings of the Steklov Institute of Mathematics, Volume 323, Pages 206-216 (год публикации - 2023)
10.1134/S0081543823050139
13.
Темляков В.Н.
Разреженное восстановление в некоторых функциональных классах в интегральных нормах
Математический сборник, Том 215, Номер 10, С. 146-166 (год публикации - 2024)
10.4213/sm10086
14.
Косов Е.Д., Темляков В.Н.
Sampling discretization of the uniform norm and applications
Journal of Mathematical Analysis and Applications, Volume 538, Issue 2, 128431 , 25 pp. (год публикации - 2024)
10.1016/j.jmaa.2024.128431
15.
Лимонова И.В., Малыхин Ю.В., Темляков В.Н.
Односторонние неравенства дискретизации и восстановление по выборке
Успехи математических наук, Том 79, Выпуск 3(477), С. 149-180 (год публикации - 2024)
10.4213/rm10175
16.
Асташкин С.В., Лыков К.В.
Об одном свойстве кратной системы Радемахера и его применении к задачам об уклонении в графах
Успехи математических наук, Том 79, Выпуск 4(478), С. 173–174 (год публикации - 2024)
10.4213/rm10185
17.
Асташкин С.В.
Последовательности независимых функций и структура симметричных пространств
Успехи математических наук, Том 79, Выпуск 3(477), 3–92 (год публикации - 2024)
10.4213/rm10171
18.
Шкляев К.С.
О локально чебышевских множествах
Математические заметки, Том 115, Выпуск 4, С. 626–633 (год публикации - 2024)
10.4213/mzm13817
19.
Бородин П.А., Ершов А.М.
Задача С. Р. Насырова о приближении наипростейшими дробями на отрезке
Математические заметки, Том 115, Выпуск 4, С. 568–577 (год публикации - 2024)
10.4213/mzm14108
20. Бородин П.А., Копецка Е. Convergence of remote projections onto convex sets Pure and Applied Functional Analysis, Volume 8, Number 6, Pages 1603-1620 (год публикации - 2023)
21.
Бородин П.А., Савинова Е.А.
Всякая чебышевская кривая без самопересечений монотонна
Математические заметки, Том 116, Выпуск 2, С. 321–323 (год публикации - 2024)
10.4213/mzm14311
22.
Темляков В.Н.
Скорость сходимости пороговых жадных алгоритмов
Математический сборник, Том 215, Номер 2, С. 147-162 (год публикации - 2024)
10.4213/sm9926
23.
Горбачев Д.В., Солодов А.П.
New Conditions for the Convergence of a Weak Greedy Algorithm
Mathematical Notes, Volume 116, Issue 3, Pages 566–570 (год публикации - 2024)
10.1134/S0001434624090165
24.
Асташкин С.В.
On embeddings in the intersection X ∩ L∞
Banach Journal of Mathematical Analysis, Volume 18, Article number 75 (год публикации - 2024)
10.1007/s43037-024-00380-8
25.
Асташкин С.В.
О подпространствах пространств Орлича, порожденных независимыми копиями в среднем равной нулю функции
Известия РАН. Серия математическая, Том 88, Выпуск 4, С. 3–30 (год публикации - 2024)
10.4213/im9531
26.
Асташкин С.В.
Об изоморфных вложениях в классе дизъюнктно однородных перестановочно инвариантных пространств
Сибирский математический журнал, Том 65, Номер 3, С. 435–445 (год публикации - 2024)
10.33048/smzh.2024.65.301
27.
Иванов В.И.
Обобщенное одномерное преобразование Данкля в прямых задачах теории приближений
Математические заметки, Том 116, Выпуск 2, С. 245–260 (год публикации - 2024)
10.4213/mzm14358
28.
Иванов В.И.
Обобщенное преобразование Данкля на прямой в обратных задачах теории приближений
Чебышевский сборник, Том 25, Выпуск 2, С. 67-81 (год публикации - 2024)
10.22405/2226-8383-2024-25-2-67-81
29.
Горбачев Д.В.
Многомерные весовые неравенства для целых функций экспоненциального типа
Математические заметки, Том 116, Выпуск 5, С. 809–813 (год публикации - 2024)
10.4213/mzm14393
30.
Кашина А.Д., Плотников М.Г.
Восстановление функций из p-ичных классов типа Соболева и Коробова с малыми параметрами гладкости
Математические заметки, Том 116, Выпуск 5, С. 744–758 (год публикации - 2024)
10.4213/mzm14208
31.
Попов А.Ю., Солодов А.П.
Распространение оценки снизу С.А. Теляковского суммы синус-ряда с выпуклой последовательностью коэффициентов на более длинный отрезок
Вестник Московского университета. Серия 1: Математика. Механика, Номер 4, С. 26–32 (год публикации - 2024)
10.55959/MSU0579-9368-1-65-4-4
32.
Терехин П.А.
Frames for Hilbert spaces with respect to l^1-sum of finite-dimensional spaces
Poincare Journal of Analysis and Applications, Volume 10, No. 3, Special issue, Pages 19-25 (год публикации - 2023)
10.46753/pjaa.2023.v010i03.002