

На Урале обнаружили следы доисторических существ возрастом более 563 млн лет

33

На пресс-конференции РНФ и «Россия сегодня» представили медицинскую разработку для лечения ран

39

РНФ и Министерство науки и технологий KHP подписали меморандум о взаимопонимании

Фоторепортаж из Тимирязевской академии

СОДЕРЖАНИЕ

2 ПРИВЕТСТВЕННАЯ КОЛОНКА

РАЗДЕЛ1

4 открытия

Яркие результаты грантополучателей Фонда в разных областях науки

- Инструмент для моделирования опасных вибраций повысит надежность авиалайнеров
- Самая молодая нейтронная звезда нашей галактики быстро остывает из-за мощных нейтринных реакций
- Диабет под контролем: созданы катализаторы для биосенсоров и молекулы против осложнений
- Определены эволюционные связи грибка, убивающего летучих мышей
- Экспресс-тест защитит спортсменов от внезапной смерти
- Съедобный гибридный гель заменит вредные жиры в продуктах питания
- На Урале обнаружили следы доисторических существ возрастом более 563 миллионов лет
- Обнаружена связь между посещением музеев и улучшением слуховой рабочей памяти дошкольников
- Предложен надежный способ передачи больших данных в космосе

РАЗДЕЛ 2

24 события

Новости из жизни Фонда

- «Школа РНФ» прошла на XIII Всероссийском съезде советов молодых ученых и студенческих научных обществ
- PHФ провел сессии и мастер-классы в рамках форума научных коммуникаторов SciComm-2025
- Опубликован указ Президента России о членах попечительского совета РНФ
- На пресс-конференции в ТАСС Фонд и телеканал «Наука» объявили итоги всероссийского фотоконкурса «Снимай науку!» и подписали соглашение о сотрудничестве
- РНФ и фестиваль НАУКА 0+ запускают совместный конкурс научной журналистики «Формула слова»
- Прантополучатели РНФ герои выставки «Наука в лицах» в городах России и на площадках крупных мероприятий

- PHФ и медиагруппа «Россия сегодня» представили на пресс-конференции разработку для лечения ран
- Региональные конкурсы институтов развития масштабируют по модели РНФ
- РНФ на «Технопроме-2025»: гранты Фонда для развития регионов и реализации национальных проектов технологического лидерства
- Фонд подвел итоги конкурсов прикладных проектов и исследований в рамках национальных проектов технологического лидерства
- ЭРНФ и Министерство науки и технологий КНР подписали меморандум о взаимопонимании
- Фонд на ВЭФ: международное научнотехническое сотрудничество в новую эпоху и инструменты РНФ для развития регионов
- 43 РНФ стал партнером образовательного онлайн-курса «Научпоп-журналистика»
- Ученые из четырех регионов России приняли участие в «Научном акселераторе Нижегородской области: Школе РНФ»
- РНФ принял участие в работе Российского форума «Микроэлектроника-2025»

РАЗДЕЛЗ

48 разработка

Технологии, устройства и материалы, созданные в лабораториях

РАЗДЕЛ 4

52 ИНТЕРВЬЮ

Ведущие российские ученые и эксперты о своей работе и будущем науки

Доктор технических наук, академик РАН, профессор Ирина Чернуха о новом поколении отечественных функциональных продуктов питания

РАЗДЕЛ 5

60 мнение

Грантополучатели Фонда о трендах в науке

РАЗДЕЛ 6

94 фоторепортаж

Фотоистории из научных лабораторий грантополучателей Фонда

Российский государственный аграрный университет – MCXA имени К. А. Тимирязева

IPMBETCTBEHHA

Технологическое обеспечение продовольственной безопасности - один из приоритетов стратегии научно-технологического развития Российской Федерации. Обеспечение конкурентоспособности отечественной сельскохозяйственной продукции на мировых рынках продовольствия и снижение технологических рисков в агропромышленном комплексе на фоне глобального продовольственного кризиса — это те основные вызовы, которые сегодня должны определять приоритетные направления в развитии научных исследований в области сельского хозяйства.

шенствования пород животных интеллекта. с заданными свойствами, развитие диагностики патогенов в целях ческого потенциала имеющихся нуто только на основе разработки и внедрения в сельскохозяйственный сектор страны наукоемких

Ориентированный на эти вызовы технологий, основанных на достиспектр междисциплинарных науч- жениях общей и частной генетики, ных исследований предусматривает геномики растений и животных, разработку и внедрение передовых биотехнологии, синтетической биотехнологий ускоренного создания логии, биоинформационных техноновых сортов растений и совер- логий, применении искусственного

инновационных агротехнологий, Мощный научно-технологический потенциал — это залог сильного максимальной реализации генети- и независимого от внешних факторов сельского хозяйства. Огромную и вновь создаваемых форм расте- роль в развитии научно-технологиний и животных, создание эффек- ческих продуктов, уже сегодня востивных средств защиты от патоге- требованных экономикой, играют нов, профилактики и лечения забо- инструменты Фонда по поддержке леваний. Решение этих важнейших научных коллективов под руководнаучных задач может быть достиг- ством ведущих и молодых ученых.

РИПАТАН ЗИНОВЬЕВА

акалемик РАН, локтор биологических наук, директор Федерального исследовательского центра животноводства — ВИЖ имени Л. К. Эрнста, лауреат Государственной премии Российской Федерации для молодых ученых в области науки и техники, член экспертного совета по целевым конкурсам и координатор Научно-технологического совета РНФ

В этом номере журнала вы найдете примеры проектов в области сельскохозяйственных наук, которые были поддержаны РНФ и сегодня получают важные для науки и страны результаты: помогают выявлять с помощью новых методов наиболее подходящие условия для выращивания различных культур — не боящийся грибковых болезней, от пшеницы до яблок и винограда можно увидеть в фоторепорта-(стр. 63), развивать кормопроизвод- же из лаборатории МСХА имени ство — создавать более сложные К. А. Тимирязева (стр. 94). добавки с применением молекулярно-генетических подходов (стр. 78), Создаваемые сельским хозяйством привлекать репродуктивные тех- продукты не всегда могут дать донологии в такие консервативные статочное количество питательных направления, как, например, коне- веществ. О том, как разрабатываютводство, а также внедрять цифро- ся функциональные продукты пивые методы для мониторинга жи- тания, способные целенаправленно вотных (стр. 85).

Одно из важнейших направлений ра- пациентов с хроническими забоботы наших коллег — это изучение леваниями, рассказывает академик и создание нового поколения культур, РАН Ирина Чернуха (стр. 52). устойчивых к низким температурам и не подверженных распространен- На мой взгляд, именно такие проекным заболеваниям. Как исследова- ты помогут нашей стране достичь

>> ОГРОМНУЮ РОЛЬ В РАЗВИТИИ НАУЧНО-ТЕХНОЛОГИЧЕСКИХ ПРОДУКТОВ, УЖЕ СЕГОДНЯ ВОСТРЕБОВАННЫХ ЭКОНОМИКОЙ, ИГРАЮТ ИНСТРУМЕНТЫ ФОНДА ПО ПОДДЕРЖКЕ НАУЧНЫХ **КОЛЛЕКТИВОВ ПОД РУКОВОДСТВОМ** ВЕДУЩИХ И МОЛОДЫХ УЧЕНЫХ

восполнять дефициты здоровых людей и даже улучшать самочувствие

тели разрабатывают озимый рапс, технологического суверенитета.

ПОДДЕРЖКА ФОНДОМ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

показатели за 2014-2025 гг.

млрд

объем финансирования

количество заявок

поддержанных проектов

>4,5 _{тысячи}

исполнителей проектов

65% из них

молодые ученые

научных публикаций

география охвата

> 230 организаций

регион

... // ОТКРЫТИЯ

ЯРКИЕ РЕЗУЛЬТАТЫ ГРАНТОПОЛУЧАТЕЛЕЙ ФОНДА В РАЗНЫХ ОБЛАСТЯХ НАУКИ

2025 ГОД
//
ИЮЛЬ-АВГУСТ-СЕНТЯБРЬ
/
РАЗДЕЛ #1
ОТКРЫТИЯ > НОВОСТИ
ГРАНТОПОЛУЧАТЕЛЕЙ

НИКОЛАЙ

КУЗНЕЦОВ

Санкт-Петербургский государственный университет

Санкт-Петербург

ИНСТРУМЕНТ ДЛЯ МОДЕЛИРОВАНИЯ ОПАСНЫХ ВИБРАЦИЙ ПОВЫСИТ НАДЕЖНОСТЬ АВИАЛАЙНЕРОВ

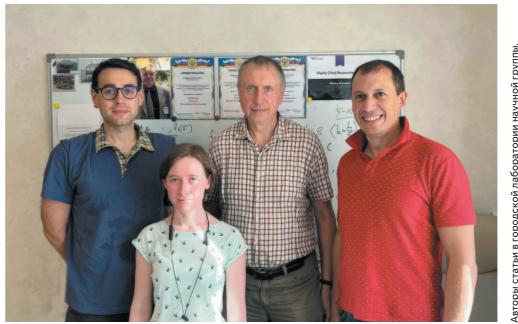
Источник: ТАСС

Ученые разработали математическую модель, которая позволяет более точно описывать тип опасных вибраций в крыльях и других структурных элементах самолетов. Такие вибрации, или флаттер, ускоряют износ деталей и могут привести к разрушению летательных аппаратов. Инструмент анализирует вибрации и находит все возможные режимы колебаний, включая скрытые и неустойчивые. Используя новую модель, конструкторы смогут лучше понять причины возникновения вибраций и разработать эффективные устройства для их подавления.

разрушению в полете.

нии летательных аппаратов листы используют устройства для сталкиваются с серьезной пробле- гашения вибраций — демпферы. мой — флаттером. Это внезапно Они создают силу сопротивления, возникающие и быстро нарастаю- поглощающую энергию вибраций, щие вибрации элементов конструк- и удерживают детали конструкции ции самолетов, в том числе крыльев в состоянии покоя, не давая колеи хвоста. Они ускоряют износ де- баниям возникнуть снова. Однако талей и даже могут привести к их существующие устройства не всегновение скрытых колебаний.

виаконструкторы при созда- Для борьбы с флаттером специада оказываются эффективными, поскольку динамика колебаний очень сложна, а стандартные методы моделирования не объясняют возник-



Ученые создали новую математическую модель, которая более точно описывает флаттер. Она опирается на классическую математическую модель, разработанную еще в советское время математиком Мстиславом Келдышем. Ин- Новая модель по ключевым свой- С помощью предложенного инструструмент состоит из двух частей: ствам не отличается от исходной, мента инженеры смогут проектироописания крыла и характеристики при этом позволяет провести точ- вать более надежные и эффективдемпфера, упрощенной исследова- ный математический анализ си- ные демпфирующие устройства для телями до V-образной математиче- стемы и найти все возможные ва- крыльев и других элементов самоской функции.

>> МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПОМОЖЕТ ПРОЕКТИРОВАТЬ БОЛЕЕ НАДЕЖНЫЕ УСТРОЙСТВА ДЛЯ ПОДАВЛЕНИЯ ОПАСНЫХ ВИБРАЦИЙ В КРЫЛЬЯХ И ДРУГИХ ЭЛЕМЕНТАХ САМОЛЕТОВ

рианты колебаний, даже скрытые. летов и тем самым повысить безо-

пасность полетов.

// Результаты исследования опубликованы в журнале International Journal of Robust and Nonlinear Control

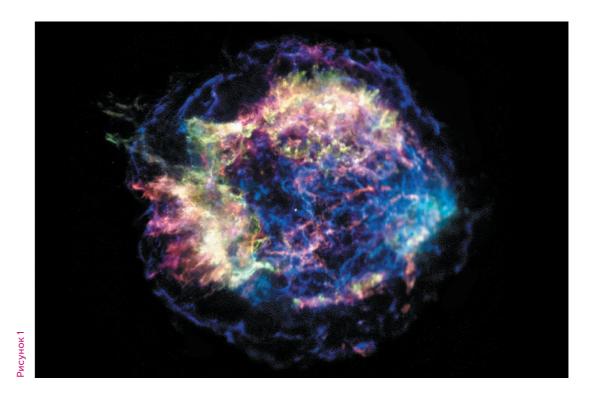
ДМИТРИЙ

ЯКОВЛЕВ

физико-математических наук

имени А. Ф. Иоффе РАН

Санкт-Петербург


САМАЯ МОЛОДАЯ НЕЙТРОННАЯ ЗВЕЗДА НАШЕЙ ГАЛАКТИКИ БЫСТРО ОСТЫВАЕТ ИЗ-ЗА МОЩНЫХ НЕЙТРИННЫХ РЕАКЦИЙ

Источник: РИА Новости

Физики предложили новый сценарий остывания самой молодой нейтронной звезды возрастом 345 лет в галактике Млечный Путь. За 20 лет наблюдений температура ее поверхности уменьшилась на несколько процентов, что гораздо больше, чем предсказывала стандартная теория. Новая модель связывает ускоренное остывание с особо мощными нейтринными реакциями, которые идут вблизи центра звезды и быстро охлаждают центральную область. Наблюдения остывания нейтронной звезды в туманности Кассиопея А позволит приблизиться к решению фундаментальной проблемы физики и астрофизики — определению свойств сверхплотного вещества и внутреннего строения нейтронных звезд.

экзотические из всех звезд. Их щество может обладать свойствамасса примерно такая же, как у Солн- ми, схожими со сверхтекучестью ца, а радиус всего около 10 киломе- и сверхпроводимостью земных матров — в 70 000 раз меньше солнеч- териалов, но при гораздо более высоного. Вещество внутри таких звезд ких температурах. сжато намного сильнее, чем материя

____ейтронные звезды — самые в атомных ядрах. Столь плотное ве-

>> дальнейшее изучение самой молодой НЕЙТРОННОЙ ЗВЕЗДЫ ПРИБЛИЗИТ УЧЕНЫХ К РЕШЕНИЮ ФУНДАМЕНТАЛЬНОЙ ПРОБЛЕМЫ ФИЗИКИ — ОПРЕДЕЛЕНИЮ СВОЙСТВ СВЕРХПЛОТНОГО ВЕЩЕСТВА И ВНУТРЕННЕГО СТРОЕНИЯ ТАКИХ ЗВЕЗД

Кассиопея А — самая молодая литическую модель, которая наиз объектов, чей возраст точно глядно объясняет механизм заизвестен благодаря астрономи- держки остывания в первые два ческим наблюдениям вспышек столетия жизни нейтронной звезды сверхновых, сопровождавших их и его ускорение в настоящее врерождение. При этом ее остывание мя. Согласно расчетам, быстрое уникально: уменьшение темпера- остывание регулируется не сверхтуры поверхности удается наблю- текучестью, как предполагалось дать в реальном времени. Однако ранее, а мощным теплоотводом причины быстрого остывания — из небольшого внутреннего ядра на несколько процентов за 20 лет — звезды, где благодаря его высокой не до конца понятны. Ранее счи- плотности открываются процессы талось, что быстрое охлаждение особенно интенсивного нейтринзвезды в туманности Кассиопея А ного охлаждения. Дальнейшее связано именно с возникновением изучение самой молодой нейтронсверхтекучести сверхплотного ве- ной звезды позволит надежно щества при понижении температу- определить истинный сценарий ры в ядре звезды.

Нейтронная звезда в туманности Ученые разработали новую анаускоренного остывания.

Рисунок 1.

Остаток сверхновой Кассиопея А. В центре остывающая нейтронная звезда, наблюдаемая в рентгеновских лучах космической обсерваторией «Чандра». Источник: NASA / CXC / UNAM / loffe / D. Page, P. Shternin et al.

// Результаты исследования опубликованы в журнале **Journal of High Energy Astrophysics**

АРКАДИЙ

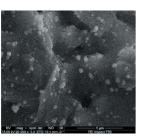
КАРЯКИН

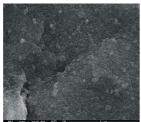
КОНСТАНТИН

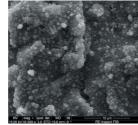
CABATEEB

Доктор химических наук

университет имени М. В. Ломоносова


10




ДИАБЕТ ПОД КОНТРОЛЕМ: СОЗДАНЫ КАТАЛИЗАТОРЫ ДЛЯ БИОСЕНСОРОВ И МОЛЕКУЛЫ ПРОТИВ ОСЛОЖНЕНИЙ

Источник: Коммерсант

Ученые создали ультрастабильный электрокатализатор, который обеспечивает непрерывную работу биосенсоров, измеряющих уровень глюкозы у больных сахарным диабетом. Новый подход обеспечит разработку датчиков уровня сахара в крови, работающих без проколов кожи и регулярной калибровки устройства.

ции диабета, в мире насчитывается около 590 млн человек с сахарным диабетом.

Сахарный диабет занимает седьмое ложнениями. Поддержание уровня гает отсрочить тяжелые последствия центрации глюкозы в течение дня.

Сканирующая электронная микроскопия (a) гексацианоферрата никеля. (b) берлинской лазури, (с) композита. Увеличение a: 20 000, b: 50 000, c: 10 000.

Источник: Аркадий Карякин

По данным Международной федера- Ученые синтезировали композитный материал на основе гексацианоферратов железа и никеля для получения стабильного электрокатализатора. Созданный на его основе глюкозный биосенсор сохранял место по смертности и опасен ос- чувствительность более трех суток непрерывного мониторинга уровня глюкозы в пределах нормы помо- глюкозы. Разработка станет основой для малоинвазивных сенсоров и неболезни. Для этого пациентам тре- инвазивных мониторов для точного буется многократный контроль кон- измерения уровня сахара без необходимости регулярной настройки и проколов кожи.

> // Результаты исследования опубликованы в журнале **Biosensors** and Bioelectronics

Источник: РИА Новости

Ученые синтезировали новые соединения, которые можно использовать для разработки препаратов против тяжелых последствий сахарного диабета второго типа, например незаживающих ран и почечной недостаточности. Полученные молекулы не только снижают уровень глюкозы, но и блокируют образование токсичных «засахаренных» белков.

В организме молекулы глюкозы могут присоединяться к белкам, вызывая их «засахаривание», из-за чего коллаген теряет эластичность, сосуды истончаются, а повреждения нервов приводят к боли и онемениям. При диабете высокий уровень глюкозы ускоряет этот процесс, что приводит к образованию хронических ран и воспалетия опухолей.

>> ОБРАЗЦЫ ПОДАВЛЯЛИ **ОБРАЗОВАНИЕ** «ЗАСАХАРЕННЫХ» БЕЛКОВ БОЛЕЕ ЧЕМ НА 70%

Рисунок 1

Внешний вид одного из полученных соединений под ультрафиолетовыми лучами. Источник: Сергей Андров

// Результаты исследования опубликованы в журнале **Bioorganic & Medicinal Chemistry Letters**

Кандидат химических наук

Уральский федеральный университет имени первого Президента России

Екатеринбург

Карточка проекта

илья

попов

Донской государственный технический университет

Ростов-на-Дону

ОПРЕДЕЛЕНЫ ЭВОЛЮЦИОННЫЕ СВЯЗИ ГРИБКА, УБИВАЮЩЕГО **ЛЕТУЧИХ МЫШЕЙ**

Источник: Naked Science

Ученые уточнили эволюционные связи возбудителя синдрома белого носа у летучих мышей, грибка Pseudogymnoascus destructans, с его непатогенными родственниками. По оценкам ученых, общий предок грибка и ближайшего непатогенного вида жил около 28 миллионов лет назад. У летучих мышей при синдроме белого носа ухудшается иммунитет, повреждаются крылья и происходит обезвоживание организма, которое приводит к гибели. Полученные данные проливают свет на происхождение и жизнедеятельность возбудителя синдрома белого носа и будут полезны при разработке лечения этого заболевания.

етучие мыши опыляют рас- белого носа — заболевания, вызы-

тения, распространяя их ваемого грибом Pseudogymnoascus семена, а также регулируют чис- destructans. Единичные случаи ленность насекомых-вредителей, этого синдрома также зарегистринапример моли и медведки. Одна- рованы в России. При этом до сих ко в последние годы численность пор не до конца понятно, как его летучих мышей во всех местах оби- возбудитель меняется генетически тания сокращается из-за синдрома и подстраивается под новые условия, чтобы заражать все больше животных.

>> BO3БУДИТЕЛЬ ГРИБКА PSEUDOGYMNOASCUS DESTRUCTANS OTHOCHTCЯ К ОДНОЙ ЭВОЛЮЦИОННОЙ ВЕТВИ С АНТАРКТИЧЕСКИМИ ГРИБАМИ, ОБЩИЙ ПРЕДОК КОТОРЫХ ЖИЛ ОКОЛО 140 МЛН ЛЕТ НАЗАД

та. Позднее, примерно 28 милли- Авторы также исследовали данные предполагают, что именно эти пока онов лет назад, Pseudogymnoascus о белках, которые может синтезиро- не изученные белки могут вносить destructans и его близкий родствен- вать патоген, и выявили 12 тысяч вклад в болезнетворность гриба. ник Pseudogymnoascus pannorum белков с присвоенными функция- Полученная информация поможет разошлись от общего предка, после ми, тогда как ранее было описано лучше понять природу возникновечего первый приспособился к жизни ишь 2 тысячи, а об их свойствах иня патогена и защитить популяции в холодных пещерах и стал возбуди- ничего не было известно. Ученые летучих мышей.

Ученые проанализировали геном

гриба Pseudogymnoascus destructans.

Анализ показал, что он относит-

ся к одной эволюционной ветви

с антарктическими грибами, об-

щий предок которых жил около 140,9 миллиона лет назад

в условиях более теплого клима-

Летучая мышь в руках исследователя. Источник: Илья Попов

> // Результаты исследования опубликованы в журнале

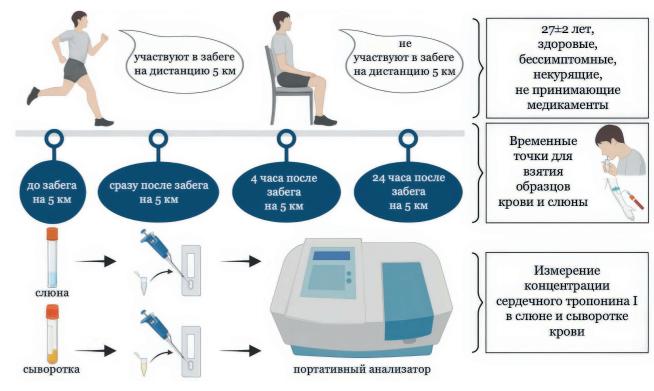
АЛЕКСАНДР

овчинников

Кандидат биологических наук

исследовательский государственный университет имени Н.И.Лобачевского

Нижний Новгород


ЭКСПРЕСС-ТЕСТ ЗАЩИТИТ СПОРТСМЕНОВ ОТ ВНЕЗАПНОЙ СМЕРТИ

Источник: Известия

Ученые экспериментально подтвердили, что уровень белка тропонина в слюне соответствует его содержанию в крови. Это соединение традиционно используется в качестве маркера для выявления повреждений сердца после тяжелых тренировок у спортсменов. Однако необходимость забора материала из вены ограничивает подобные исследования. Разработка открывает путь к созданию экспресс-тестов для раннего выявления проблем с сердцем у атлетов, на которые приходится более половины случаев внезапной смерти во время тренировок.

чин смертности среди спортсмене испытывали явных симптомов ния и дискомфорта в целом. перед трагедией. Традиционно для диагностики инфаркта миокарда

ердечно-сосудистые осложне- измеряют уровень тропонина в крония — одна из главных при- ви. Этот белок участвует в мышечном сокращении и служит золотым нов. Согласно статистике, в 56% стандартом маркера повреждения случаев внезапная смерть во вре- клеток сердечной мышцы. Однако мя тренировок происходит из-за брать кровь во время физических нарушений в работе сердца. При нагрузок оказывается зачастую неэтом большинство пострадавших возможно из-за риска инфицирова-

Дизайн исследования. Источник: Александр Овчинников

способ оценки повреждения миов крови, благодаря чему этот маркер и удобнее. можно использовать для неинвазивного мониторинга. В исследовании принимали участие мужчиныспортсмены. У испытуемых брали кровь и слюну до забега, сразу после, через 4 и 24 часа. Результаты показали, что у бегунов уровень сердечного тропонина-І в слюне и крови значительно повышался после физической нагрузки и достигал пика через четыре часа концентрация белка увеличилась почти в четыре раза по сравнению с контрольной группой. Через 24 ходным значениям. В контрольной группе изменений не наблюдалось.

Ученые предложили более простой Исследование уровня сердечного тропонина-І в слюне продемонкарда у спортсменов. Авторы пока- стрировало точность, сопоставизали, что концентрация тропонина-І мую с его анализом в крови. При в слюне согласуется с его уровнем этом анализ слюны проще, быстрее

> >> ИССЛЕДОВАНИЕ УРОВНЯ СЕРДЕЧНОГО ТРОПОНИНА-І В СЛЮНЕ СПОРТСМЕНОВ продемонстрировало точность, СОПОСТАВИМУЮ С АНАЛИЗОМ ЕГО СОДЕРЖАНИЯ В КРОВИ

Результаты открывают новые возможности для кардиомониторинга спортсменов. Экспресс-тест слюны позволит оперативно получать информацию о повреждении сердца, часа показатели возвращались к ис- вызванном физической нагрузкой, что поможет спасти жизни людей.

> // Результаты исследования опубликованы в журнале **Scientific Reports**

РИПИТАТАН

НЕПОВИННЫХ

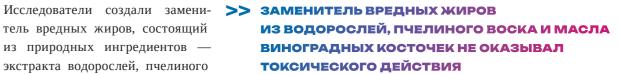
Доктор технических наук

верситет генетики, иотехнологии и инженерии имени Н.И.Вавилова

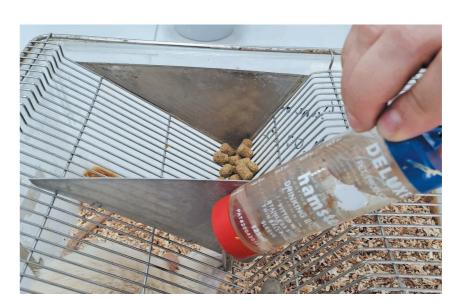
СЪЕДОБНЫЙ ГИБРИДНЫЙ ГЕЛЬ ЗАМЕНИТ ВРЕДНЫЕ ЖИРЫ В ПРОДУКТАХ ПИТАНИЯ

Источник: ТАСС

Ученые разработали пищевой гибридный гель для замены твердых насыщенных жиров в продуктах питания. Исследование на лабораторных крысах показало, что длительное употребление геля не приводит к ухудшению состояния животных. Благодаря этому разработка станет важным шагом на пути к замене вредных насыщенных и трансжиров безопасным аналогом в шоколаде, мороженом, колбасах, сырах и других продуктах.



егулярное и избыточное потре- изделиях, фастфуде и полуфабрикабление насыщенных и транс- тах. Всемирная организация здравожиров приводит к повышению уров- охранения рекомендует значительня «плохого» холестерина в крови. но сокращать их долю в рационе, но В свою очередь, он может отклады- для пищевой промышленности это ваться на стенках артерий, образуя сложная задача, потому что именно бляшки и увеличивая риск инфар- насыщенные и трансжиры придактов и инсультов. Такие жиры ши- ют продуктам требуемую текстуру, роко используются в кондитерских пластичность, вкус и обеспечивают длительный срок годности.


из Саратовского государственного университета генетики, Н. И. Вавилова. Источник: Наталия Неповинных

тель вредных жиров, состоящий из природных ингредиентов экстракта водорослей, пчелиного воска и масла виноградных косточек. При производстве геля жид- Ученые оценили безопасность а введение в рацион добавки не покое растительное масло, богатое продукта в эксперименте на кры- влияло на работу внутренних орполезными ненасыщенными жир- сах, которые употребляли боль- ганов. Гибридный гель не оказывал ными кислотами, «заключили» шие количества гибридного ве- токсического действия, а значит, в трехмерную сеть, созданную щества вместе с другой пищей. потенциально может использоватьгидрогелем и структурообразова- Через 30 дней после последнего ся в качестве полноценного и безотелем. Такое масло теряло теку- введения геля у животных взя- пасного заменителя твердых жиров честь и вело себя как твердый жир, и кровь для анализа. Ключевые в самых разных продуктах: от кон-

ные свойства.

но при этом сохранило все полез- показатели у крыс, получавших дитерских изделий и шоколада гель, не отличались от нормы, до мясных и молочных продуктов.

Испытание опытного образца гибридного геля на лабораторных животных. Источник: Наталия Неповинных

// Результаты исследования опубликованы в журнале Food Systems

← содержание

16

18

AHTOH

КОЛЕСНИКОВ

Кандидат наук внаваемый в РФ PhD)

Геологический институт РАН

Москва

НА УРАЛЕ ОБНАРУЖИЛИ СЛЕДЫ ДОИСТОРИЧЕСКИХ СУЩЕСТВ ВОЗРАСТОМ БОЛЕЕ 563 МИЛЛИОНОВ ЛЕТ

Источник: РИА Новости

Ученые обнаружили на Среднем Урале местонахождение ископаемых организмов, обитавших на Земле более 563 миллионов лет назад — в позднем докембрии. В это время на планете стали появляться многоклеточные существа с относительно сложным строением. Авторы описали окаменелости организмов, по форме напоминающих уплощенные диски с радиальными выростами, а также существ, тело которых состояло из камер, расположенных цепочкообразно друг за другом, или листовидных структур с повторяющимися по форме модулями. Находки помогут лучше понять историю появления и развития первых многоклеточных животных.

Земле стали появляться первые сохранились в палеонтологической многоклеточные организмы с отно- летописи. Поэтому знания о стросительно сложным строением. Их ении, эволюции и географическом называют биотой эдиакарского типа, распространении этих вымерших поскольку они жили преимуще- существ крайне ограничены. На сественно в эдиакарии — последнем годняшний день известно всего непериоде позднего докембрия. Они имели мягкое тело, не покрытое мися ископаемыми остатками таких

 позднем докембрии — около твердыми скелетными структурами, Б570–550 млн лет назад — на из-за чего их остатки крайне плохо сколько мест с хорошо сохранившиорганизмов.

Ученые обнаружили на Среднем В слое пород ученые нашли 45 от-Урале еще одно место, где в до- печатков и слепков докембрий- Рисунок 1 вольно большом количестве со- ских организмов. Большинство хранились ископаемые остатки окаменелостей имели вид плоских мягкотелых организмов позднего дисков, иногда с радиально-лудокембрия. Авторы исследовали чистыми выростами. Кроме того, обнажения горных пород возрас- авторы обнаружили слепки палетом 563-570 миллионов лет, рас- опасцихнид — древних существ, положенные у подножия горы Лы- чье тело состояло из множества сая на побережье Широковского округлых или вытянутых камер,

водохранилища в Пермском крае. собранных в цепочку.

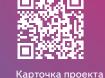
Полевая фотография поверхности пород с дисковидными органами прикрепления Aspidella sp. и стеблевидными отростками. Источник: Anton Kolesnikov et al. / Gondwana Research, 2025

Окаменелость первых на Урале рангеоморфных Rangea sp. организмов с листовидной формой и фрактальными модулями. Источник: Anton Kolesnikov et al. / Gondwana Research, 2025

Рисунок 1

Рисунок 2

>> M3BECTHO BCEFO **НЕСКОЛЬКО МЕСТ С ХОРОШО** СОХРАНИВШИМИСЯ **ИСКОПАЕМЫМИ ОСТАТКАМИ ДРЕВНИХ ОРГАНИЗМОВ**


Также были найдены следы су- Находки с берегов Широковскощихся элементов разной величины. в городе Губаха Пермского края.

ществ, которые раньше не встре- го водохранилища дают новые чались на Среднем Урале, — ран- данные о строении и образе жизгеоморфов. Эти организмы имеют и древних мягкотелых животных листовидную или перьевидную и станут частью музейной экспозиформу, состоящую из повторяю- ции «Парка эдиакарского периода»

Слева направо: участники экспедиции Самир Джавадов, Егор Высоцкий, Владимир Паньков, Виолетта Панькова, Антон Колесников у обнажения с новыми палеонтологическими остатками на Широковском водохранилище. Источник: Антон Колесников

// Результаты исследования опубликованы в журнале Gondwana Research

20

КРИСТИНА

TAPACOBA

Московский государственный рситет имен М.В.Ломоносова

ОБНАРУЖЕНА СВЯЗЬ **МЕЖДУ ПОСЕЩЕНИЕМ** МУЗЕЕВ И УЛУЧШЕНИЕМ СЛУХОВОЙ РАБОЧЕЙ ПАМЯТИ дошкольников

Источник: ТАСС

Ученые выявили влияние регулярных посещений музеев на улучшение слуховой рабочей памяти детей дошкольного возраста. Обнаруженная закономерность сохраняется независимо от пола и возраста детей, а также уровня образования родителей. Полученные выводы подчеркивают важность культурной активности для когнитивного развития детей дошкольного возраста.

ошкольный возраст — это 🕇 решающий этап жизни, когда формируется человеческий капитал. Исследователи до сих пор спорят, какие именно факторы сильнее всего влияют на этот процесс.

Авторы исследовали частоту посещения культурных мероприятий уровня образования родителей. При среди более 1,2 тыс. семей с дошкольниками и связи культурной активности с детским когнитивным развитием. В результате было обнаружено, что около половины опрошенных семей регулярно посещают Результаты исследования могут 47,2 %, театры — 55,2 %.

гулярно посещающих музейные выбочая память. Эта закономерность подрастающего поколения. сохраняется независимо от пола

>> СЕМЬИ, ГДЕ РОДИТЕЛИ ИМЕЮТ ВЫСШЕЕ ОБРАЗОВАНИЕ, ЧАЩЕ ПОСЕЩАЮТ С ДЕТЬМИ МУЗЕИ **И ТЕАТРЫ**

и возраста дошкольников, а также этом в семьях, где родители имеют высшее образование, частота посещения музеев и театров с детьми значимо выше.

культурные мероприятия: музеи — лечь в основу программ, направленных на повышение доступности регулярного участия российских Ученые выяснили, что у детей, ре- семей в культурных мероприятиях, что в перспективе будет способставки, лучше развита слуховая ра- ствовать всестороннему развитию

> // Результаты исследования опубликованы в журнале

> **Early Child Development and Care**

← содержание

Карточка проекта

ПЕТР

ЛАЗАРЕНКО

Руководитель проекта

кирилл

БРОННИКОВ

физико-математических наук

Национальный

Санкт-Петербург

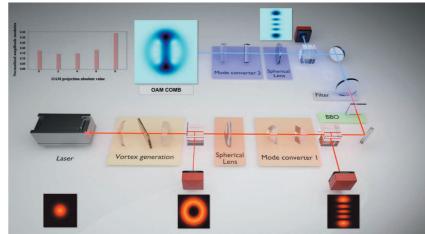
Кандидат технических наук

электронной техники

Москва

ПРЕДЛОЖЕН НАДЕЖНЫЙ СПОСОБ ПЕРЕДАЧИ БОЛЬШИХ **ДАННЫХ В КОСМОСЕ**

Источник: Naked Science


Ученые предложили простой метод повышения пропускной способности и надежности передачи данных свободно-пространственной оптической связи в космосе. Они научились управлять структурой и составом световой «гребенки» из вихревых пучков лазера. Каждый пучок при этом работает как отдельный канал передачи информации. Новый способ создания световой «гребенки» потенциально можно использовать для настройки устойчивой и быстрой оптической связи в космосе.

ческого сигнала влияют внешние факторы, например облака и пыль.

В отличие от «незакрученного» све- элементов. та, они обладают не только частотой

ля передачи информации и амплитудой — интенсивностью между космическими спут- свечения, но и проекцией орбиниками используется свободно-про- тального углового момента. Такие странственная оптическая связь. Ее вихревые световые пучки можно устройство похоже на оптический создавать с помощью технологии Wi-Fi: информация кодируется в световой «орбитальной гребенки». лазерный пучок, который трансли- Она генерирует сразу множество руется получателю. Однако пока «закрученных» пучков, каждый пропускная способность достигает со своим уникальным значением 20 Гбит/с, а на стабильность опти- проекции орбитального углового момента. Однако саму «орбитальную гребенку» обычно формируют с помощью технически сложных Создать надежное высокоскорост- устройств — специальных модунабора вихревых пучков с разными ного углового момента. Благодаря подходу можно не просто создать

Ученые разработали более простой световую «гребенку», а управлять и качественный способ получения ею и таким образом влиять на каждый отдельный вихревой пучок. Это значениями проекций орбиталь- позволит надежно кодировать и передавать информацию, увеличивая пропускную способность и стабильность оптических каналов связи.

Специальная дифракционная решетка превращает лазерный луч в оптический вихрь с заданными свойствами. Финальный преобразователь создает «орбитальную гребенку» - комбинацию световых вихрей, готовую для практического применения.

// Результаты исследования опубликованы в журнале **Nano Letters**

Новый метод формирования световой «гребенки» потенциально может быть применен для настройки стабильной и быстрой оптической связи в космосе. В том числе можно кодировать большие объемы данных и передавать их, например от спутника к спутнику, не боясь

Карточка проекта

Карточка проекта

← содержание

23

22

ное соединение могут «закручен- ляторов света, метаповерхностей ные» световые пучки — вихри, и других продвинутых оптических

Источник: Станислав Батурин

что-то потерять.

... // СОБЫТИЯ

НОВОСТИ ИЗ ЖИЗНИ ФОНДА

2025 ГОД // ИЮЛЬ-АВГУСТ-СЕНТЯБРЬ / РАЗДЕЛ #2 СОБЫТИЯ > НОВОСТИ РНФ

26

#июль

«ШКОЛА РНФ» ПРОШЛА НА XIII ВСЕРОССИЙСКОМ СЪЕЗДЕ СОВЕТОВ МОЛОДЫХ УЧЕНЫХ И СТУДЕНЧЕСКИХ НАУЧНЫХ ОБЩЕСТВ

стратегическую сессию. В рамках в конкурсах Фонда. нового формата участники предложили идеи по совершенствованию системы поддержки молодых ученых в России и оптимизации работы Фонда.

о время XIII Всероссийского На семинаре, посвященном гран-Съезда советов молодых уче- товой поддержке РНФ, Андрей ных и студенческих научных об- Блинов рассказал об основных наществ в Уфе прошла «Школа РНФ». правлениях деятельности Фонда, Фонд провел семинары по вопро- а также дал практические советы по сам грантовой поддержки, системы подготовке заявок. Отдельный блок экспертизы и особенностей кон- семинара был посвящен молодежкурсного отбора, а также открытый ным программам. Молодых ученых микрофон с заместителем генераль- призвали скрупулезно относиться ного директора РНФ Андреем Бли- к оформлению заявок, не забыновым. Кроме того, впервые в про- вать о сроках и использовать опыт грамму «Школы РНФ» включили коллег, уже принимавших участие

Стратегическая сессия РНФ

РНФ поддерживает

> 10

Источник: Координационный совет

Федерации по науке и образованию

по делам молодежи в научной и образовательной сферах Совета

при Президенте Российской

проектов

исследователи в возрасте до 39 лет

40%

руководители проектов

71%

исполнители проектов

Впервые в «Школе РНФ» состоя- Значительная часть респондентов лась стратегическая сессия, посвященная механизмам поддержки исследователей. Формат предполагал групповую работу и создание рекомендаций по развитию системы поддержки ученых, которые обеспечат широкие возможности для участия, повысят качество научных проектов и укрепят доверие между институтами развития и научным сообществом.

Кроме того, Фонд провел опрос, посвященный механизмам поддержки молодых ученых, в котором приняло участие более 100 человек — в основном молодые ученые в возрасте от 26 до 35 лет, преимущественно работающие в вузах.

ностями с формированием кол-РНФ назван лидером среди орга-

низаций, поддерживающих науку. Более 70% респондентов положительно оценили деятельность Фонда, что выше аналогичных показателей у других институтов развития. стратегической сес-Участники

столкнулась с трудностями при

подготовке заявок: отсутствием опыта, нехваткой времени и слож-

сии — опытные грантополучатели, заявители с опытом побед в конкурсах либо без него — работали в командах над кейсами как по улучшению условий труда молодых ученых в России, так и по оптимизации работы РНФ. Шесть команд представили и защитили свои идеи перед экспертами. По результатам голосования участников лидером стратегической сессии стала команда, которая подготовила ряд предложений по совершенствованию условий конкурсов и экспертизы РНФ. Все предложения были обобщены и представлены руководству Фонда.

62%

опрошенных имеют опыт участия в конкурсах РНФ

32%

как исполнители

26,9%

как руководители проектов

РНФ ПРОВЕЛ СЕССИИ И МАСТЕР-КЛАССЫ В РАМКАХ ФОРУМА НАУЧНЫХ **КОММУНИКАТОРОВ SCICOMM-2025**

коммуникации SciComm-2025, ор- меститель начальника отдела по свяганизованный СПбГУ. Мероприя- зям с общественностью РНФ Юлия тие объединило более 300 исследо- Красильникова, участники обсудили вателей, пресс-секретарей научных формирование имиджа научного сои образовательных организаций, трудника в общественном информанаучных журналистов, популяри- ционном поле и его мотивацию везаторов и авторов просветитель- сти просветительскую работу. ских проектов, сотрудников музеев, корпораций и представителей На мастер-классе по созданию бизнес-сообщества. В деловую пресс-релиза специалисты под рупрограмму форума вошли сессии, ководством представителей прессорганизованные пресс-службой служб РНФ и СПбГУ разобрали Фонда, который выступает актив- новости различных университетов ным участником сообщества науч- и НИИ, подготовленные на основе ных коммуникаторов.

■ Санкт-Петербурге прошел Во время сессии «Личный бренд ежегодный форум по научной ученого», которую модерировала за-

научных статей.

По итогам мероприятия спикеры и участники пришли к мнению, что наиболее правильной стратегией работы будет дальнейшее объединение усилий в области научной коммуникации.

ОПУБЛИКОВАН УКАЗ ПРЕЗИДЕНТА РОССИИ О ЧЛЕНАХ ПОПЕЧИТЕЛЬСКОГО СОВЕТА РНФ

ского совета Российского научного назначены пять человек. фонда». В соответствии с доку-

ладимир Путин подписал ментом членами попечительского указ «О членах попечитель- совета Фонда сроком на три года

НАЗНАЧЕННЫЕ ЧЛЕНЫ ПОПЕЧИТЕЛЬСКОГО СОВЕТА ФОНДА

Юлия Дьякова

Геннадий Красников

Анна Романовская

директор Института глобального климата экологии имени акалемика Ю А Израэл

Дмитрий Чернышенко

Правительства РФ

Евгений Шлахто

еральный директор НМИЦ имени В. А. Алмазова Минздрава Росси

ва России, академика РАН; Дмитрия Кудлая, заместителя генерального директора АО «Генериум», члена-корреспондента РАН; Сергея Лукьянова, ректора Российского национального исследовательского медицинского университета имени

Прекращены полномочия следую- Н. И. Пирогова, академика РАН; щих членов попечительского со- Владислава Панченко, вице-презивета: Ивана Дедова, президента дента РАН, академика РАН; Сергея НМИЦ эндокринологии Минздра- Царапкина, исполнительного директора ООО «НМ-Тех».

НА ПРЕСС-КОНФЕРЕНЦИИ В ТАСС ФОНД И ТЕЛЕКАНАЛ «НАУКА» ОБЪЯВИЛИ ИТОГИ ВСЕРОССИЙСКОГО **ФОТОКОНКУРСА «СНИМАЙ НАУКУ!»** И ПОДПИСАЛИ СОГЛАШЕНИЕ О СОТРУДНИЧЕСТВЕ

Прессконференция TACC

ТАСС прошла пресс-конфе- По итогам конкурса ежегодно про-«Снимай науку!». Фундаментальным партнером конкурса, как члены экспертных советов вошли в состав жюри.

ренция, посвященная ито- водятся масштабные фотовыставгам всероссийского фотоконкурса ки, которые проходят в России и за рубежом. В 2025 году победителей фотоконкурса ждал специальи в прошлом сезоне, стал РНФ: ный приз «Перспектива» от РНФ и Сколтеха за лучшую фотоработу из шорт-листа — возможность провести день в Российском научном фонде и Сколтехе.

В число стратегических целей РНФ входит популяризация науки. Для того чтобы донести до широкой аудитории результаты поддержанных нами исследований, мы используем различные форматы, в их числе фотоконкурс «Снимай науку!».

БЛИНОВ

АНДРЕЙ

заместитель генерального лиректора РНФ

леканал «Наука» и РНФ подписали соглашение о сотрудничестве. Оно предусматривает предоставление Фонду статуса фундаментального партнера телеканала, а также

Кроме того, на площадке ТАСС те- объединение усилий в части экспертной оценки при производстве научно-популярного контента, реализацию совместных мероприятий для популяризации отечественной науки и продвижение научных исследований.

Мы уверены в синергии нового партнерства — телеканал «Наука» получает доступ к уникальной эталонной научной экспертизе Фонда, а он, в свою очередь, — к площадке для продвижения своей деятельности в лице ведущего российского научнопознавательного канала.

ГРИГОРИЙ

КОВБАСЮК

генеральный директор ОАО «Наука»

соглашения

конкурс «Снимай науку!» проводится с 2017 года

3000

авторов

приняли участие

> 10 000

фотографий и видеоработ

представлено

РНФ И ФЕСТИВАЛЬ НАУКА О+ ЗАПУСКАЮТ СОВМЕСТНЫЙ КОНКУРС НАУЧНОЙ ЖУРНАЛИСТИКИ «ФОРМУЛА СЛОВА»

Конкурс проводится по восьми номинациям. Победители получат памятные дипломы и призы от дирекции фестиваля НАУКА 0+ и партнеров. Лучшие работы будут опубликованы в научно-популярных журналах.

в Московском

Выставка

в парке Горького

метрополитене

ГРАНТОПОЛУЧАТЕЛИ РНФ — ГЕРОИ ВЫСТАВКИ «НАУКА В ЛИЦАХ» В ГОРОДАХ РОССИИ И НА ПЛОЩАДКАХ КРУПНЫХ МЕРОПРИЯТИЙ

тетвертом сезоне выставки международного экономического научных организаций. Ученые ситета. представляют 14 регионов России. Среди участников — исследова- Экспозиция завершит работу на тели, работающие при поддержке юбилейном V Конгрессе моло-РНФ.

Рероями проекта стали 23 форума. Затем выставка открыученых: лауреаты премии Пре- лась на Центральной аллее ВДНХ, зидента Российской Федерации в в Московском метро и парке области науки и инноваций для Горького. Фотографии ученых молодых ученых и других клю- были представлены на Восточчевых научных премий, а также ном экономическом форуме, такучастники встреч с Президентом же выставка прошла на площад-Российской Федерации на полях ке резидента Евразийского НОЦ Конгресса молодых ученых, со- Уфимского государственного трудники ведущих российских нефтяного технического универ-

дых ученых в Научно-технологическом университете «Сириус» Торжественное открытие состо- 26-28 ноября 2025 года. В мероялось в рамках Петербургского приятии примут участие герои проекта.

РНФ И МЕДИАГРУППА «РОССИЯ СЕГОДНЯ» ПРЕДСТАВИЛИ НА ПРЕСС-КОНФЕРЕНЦИИ РАЗРАБОТКУ ДЛЯ ЛЕЧЕНИЯ РАН

та РНФ и «Россия сегодня» роченная к выходу научной статьи о создании уникального материала ков — авторы разработки, ведущие ученые и члены экспертного совета Фонда, а также журналисты федеральных и профильных СМИ.

Авторы исследования рассказали опроцессе создания нового материала и о том, что полученные результаты открывают путь к персонализированному лечению ских ран.

рамках совместного проек- В основе разработки лежит система из полимерных микрокамер, прошла пресс-конференция, приу- которые медленно высвобождают заключенные в них биологически активные вещества в повреждендля лечения ран. Среди участни- ную ткань. Это позволяет ускорить заживление раны и уменьшить объем шрама.

Лабораторные испытания подтвердили, что инновационная система медленно — в течение 3–4 дней высвобождает из камер биоактивные вещества. Авторы планируют адаптировать систему для более сложных повреждений, где фактосложных повреждений и хрониче- ры рубцевания и скорости заживления особенно важны, в частности в случае повреждения нервных тканей и спинного мозга.

Пресс-конференция

пресс-конференции

Фонд традиционно поддерживает исследования в биологии и медицине. Каждое направление составляет по 10% от всех заявок, поданных в РНФ. В последние годы внимание к этой тематике со стороны государства растет. Поэтому заявки от ученых в конкурсных программах Фонда становятся более обоснованными и востребованными. При этом наработки, касающиеся медицины и биологии, активно переходят в «клинику».

ВЛАДИМИР СТАРОДУБОВ

координатор экспертного

← содержание

РЕГИОНАЛЬНЫЕ КОНКУРСЫ **ИНСТИТУТОВ РАЗВИТИЯ** МАСШТАБИРУЮТ ПО МОДЕЛИ РНФ

собствует работа института РНТР.

аместитель председателя Пилотный проект по масштабиро-Правительства РФ, член по- ванию региональных конкурсов печительского совета РНФ Дми- по модели РНФ на иные инститрий Чернышенко провел селек- туты развития по приоритетным торное совещание с заместителями направлениям научно-технологиглав регионов, отвечающими за ческого развития позволит учинаучно-технологическое развитие тывать специфические нужды (РНТР). Он отметил, что президент и конкурентные преимущества Владимир Путин поставил нацио- каждого региона. Так, отбор и финальную цель — технологическое нансирование научных проектов лидерство, а ее достижению спо- будут происходить на региональном уровне под контролем институтов развития.

Перед нами стоит важная задача выстроить в каждом регионе России систему управления научнотехнологическим развитием, которая трансформирует научный потенциал в конкретные технологии, продукты и услуги для экономики и общества. Эффективность такой работы напрямую зависит от нашего «научного спецназа» — РНТР. Одними из инструментов его поддержки станут расширение функционала регионального сегмента домена «Наука и инновации» и запуск двух пилотных проектов. Первый — распределение внеконкурсной части контрольных цифр приема при участии РНТР субъектов, второй масштабирование региональных конкурсов по модели РНФ.

ДМИТРИЙ ЧЕРНЫШЕНКО

председателя Правительства РФ,

РНФ НА «ТЕХНОПРОМЕ-2025»: ГРАНТЫ ФОНДА ДЛЯ РАЗВИТИЯ РЕГИОНОВ И РЕАЛИЗАЦИИ НАЦИОНАЛЬНЫХ ПРОЕКТОВ ТЕХНОЛОГИЧЕСКОГО ЛИДЕРСТВА

научно-технологического потен- и кадровой политики. циала российских субъектов.

оссийский научный фонд В ходе панельной сессии «Регио-принял участие в XII Меж- нальные меры поддержки научдународном форуме технологиче- ных исследований» участники ского развития «Технопром-2025». форума познакомились с широ-Центральной темой деловой про- ким спектром инструментов и меграммы стали вопросы эффек- ханизмов содействия развитию: тивности региональных мер под- от грантов и премий глав регионов держки науки, а также развития до специализированных сервисов

региональных конкурсов

проведено РНФ с 2022 года

~2000

проектов

поддержано

паритетная основа финансирования

11 млрд руб.

объем финансирования

регион

Российский научный фонд

ектов и их участие в реализации национальных проектов технологического лидерства обсудили ты РНФ для поддержки программ HTP регионов». Заместитель генерального директора РНФ Андрей

Развитие научно-технологическо- Блинов осветил актуальные наго потенциала российских субъ- правления деятельности Фонда, рассказал о механизмах конкурсов РНФ с привлечением квалифицированных заказчиков и отэксперты в ходе дискуссии «Гран- дельно остановился на участии в национальных проектах технологического лидерства.

← содержание

36

Все конкурсы прикладных исследований сводятся к двум этапам — конкурсу заказчиков и технологических предложений, а также конкурсу исполнителей проектов. Сегодня мы проводим несколько таких конкурсов. На мой взгляд, одним из перспективных направлений являются конкурсы по национальным проектам технологического лидерства. Здесь нет ограничений ни по регионам, ни по формам участия квалифицированных заказчиков.

АНДРЕЙ БЛИНОВ

директора РНФ

эргкомитет XII Международного форума еского развития «Технопром-2025»

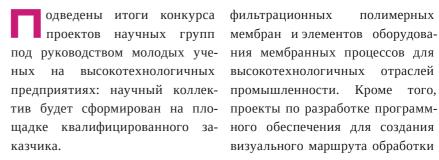
куссия, посвященная стратеги- в национальном проекте «Новые ческому развитию химической материалы и химия», а также припромышленности России. Пред- оритетные направления развития, ставители крупного бизнеса, на- механизмы государственной подучных центров, институтов раз- держки и первые практические вития и федеральных органов результаты. власти обсудили выработку согласованной стратегии достиже-

Также на форуме прошла дис- ния технологического лидерства

← содержание

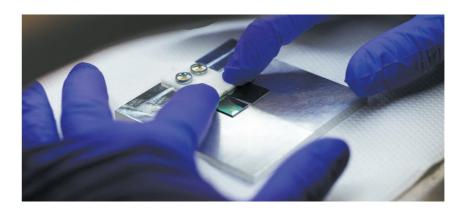
#сентябрь

Проекты на


предприятиях

Микроэлектроника

высокотехнологичных


ФОНД ПОДВЕЛ ИТОГИ КОНКУРСОВ ПРИКЛАДНЫХ ПРОЕКТОВ И ИССЛЕДОВАНИЙ В РАМКАХ НАЦИОНАЛЬНЫХ ПРОЕКТОВ ТЕХНОЛОГИЧЕСКОГО ЛИДЕРСТВА

Ученые на высокотехнологичных предприятиях

По результатам экспертизы поддержаны проекты, направпоколения гидрофильных микро- гических процессов.

полимерных высокотехнологичных отраслей визуального маршрута обработки топологии и подготовки данных к проектированию и изготовлению фотошаблонов с учетом треленные на разработку нового бований отечественных техноло-

Прикладные проекты по направлению «Микроэлектроника»

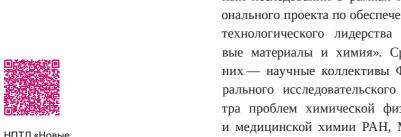
научных исследований по приоритетному направлению «Микроэлектроника», поддержанных Фондом, организации-исполнители будут работать над задачами, поставленными квалифицированными заказчиками.

рания проектов прикладных Результатом станет новая технология, подтвержденная изготовленным по ней прототипом изделия.

Конкурс памяти Евгения

Велихова

Конкурс проектов памяти Евгения Велихова


Евгения Велихова на проведение ский институт» будет разрабатыпоисковых научных исследований вать биоподобную аппаратно-пропод руководством ведущих ученых. граммную компонентную базу О необходимости организации цифро-аналоговых нейроморфных конкурса в 2024 году заявил Пре- сенсоров и вычислительных систем зидент России Владимир Путин. для эффективного решения задач В июне Фонд подвел итоги кон- искусственного интеллекта. курса по четырем лотам. Текущий

одведены итоги конкурса па- конкурс проводился по лоту №5, мяти выдающегося ученого в рамках которого НИЦ «Курчатов-

Прикладные исследования в рамках НПТЛ «Новые материалы и химия»

вые материалы и химия». Среди за имени Г. К. Борескова СО РАН них — научные коллективы Феде- и МФТИ. рального исследовательского центра проблем химической физики и медицинской химии РАН, МГУ имени М. В. Ломоносова, Инсти-

азваны победители конкурса тута нефтехимического синтеза проектов прикладных науч- имени А. В. Топчиева РАН, Белных исследований в рамках наци- городского государственного наонального проекта по обеспечению ционального исследовательского технологического лидерства «Но- университета, Института катали-

Прикладные исследования в рамках НПТЛ «Промышленное обеспечение транспортной мобильности»

чение транспортной мобильности». зидента России Б. Н. Ельцина. Проекты направлены на создание перспективных технологий для транспортной отрасли. Победителями стали коллективы Томского государственного университета

одведены итоги конкурса систем управления и радиоэлекпроектов прикладных на- троники, Кузбасского государственучных исследований в рамках ного технического университета национального проекта по обе- имени Т. Ф. Горбачева, ООО «ЭТК» спечению технологического ли- и Уральского федерального унидерства «Промышленное обеспе- верситета имени первого Пре-

#сентябрь

НПТЛ «Промышленное обеспечение транспортной

мобильности»

РНФ И МИНИСТЕРСТВО НАУКИ И ТЕХНОЛОГИЙ КНР ПОДПИСАЛИ **МЕМОРАНДУМ О ВЗАИМОПОНИМАНИИ**

переговоры. ілев, РИА Новос

онд и Министерство науки ющих взаимный интерес. Соответи технологий Китайской ствующий меморандум о взаимопопроектов в областях, представля-

Народной Республики договори- нимании подписан 2 сентября в ходе лись о проведении совместных кон- государственного визита Президенкурсов научно-исследовательских та России Владимира Путина в КНР.

Дискуссия о международном сотрудничестве

Стороны договорились, что при- цией проектов. Особое внимание оритетную поддержку получат будет уделено надлежащей защите проекты с высоким потенциалом интеллектуальной собственности трансфера и коммерциализации и рациональному использованию технологий, широкими перспек- результатов совместных проектов.

тивами индустриализации и значительной социальной эффектив- До конца текущего года будут ностью. В рамках партнерства согласованы приоритетные настороны намерены организовать правления и график проведения устойчивое и гармоничное сотруд- первого совместного конкурса, ничество, регулярный обмен ин- который планируется организо-

В 2023 году Китай стал основным

международным партнером

Партнерство с Министерством

усиливает наше стратегическое

для российских ученых.

науки и технологий Китая

и китайских ученых по

сотрудничество, акцентируя внимание на совместных исследованиях российских

приоритетным направлениям.

формацией, связанный с реализа- вать в 2026 году.

АНДРЕЙ

БЛИНОВ

заместитель генерального

#сентябрь

ФОНД НА ВЭФ: МЕЖДУНАРОДНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО В НОВУЮ ЭПОХУ И ИНСТРУМЕНТЫ РНФ ДЛЯ РАЗВИТИЯ **РЕГИОНОВ**

ческий форум. Фонд принял уча- учно-технического сотрудничества стие в деловой программе, где об- между странами и запросы предсуждалась роль фундаментальных принимателей на участие исследоисследований в обеспечении техно- вателей в международных проеклогического суверенитета и устой- тах. В завершение встречи спикеры чивого развития, а также меры по укреплению научных связей.

На панельной дискуссии «Между- технологического суверенитета. народное научно-технологическое

сентябре во Владивостоке сотрудничество в новую эпоху» обпрошел Восточный экономи- судили роль бизнеса в процессах напришли к выводу о необходимости баланса в вопросах сохранения научной открытости и достижения

международных конкурсов провел РНФ с 2014 года

объем финансирования проектов со стороны РНФ

с Амурской областью

глашение о сотрудничестве между РНФ и правительством Амурской

Также на полях ВЭФ заключено со- области. Документ направлен на развитие фундаментальной науки и научного потенциала региона.

Подписание соглашения с Российским научным фондом это не просто формальное событие, а последовательная работа по развитию научного потенциала региона. В Приамурье есть сильные исследовательские команды, в том числе в цифровой сфере, и теперь у них появится хорошая возможность получать грантовую поддержку на федеральном уровне.

ПАВЕЛ

ПУЗАНОВ

заместитель председателя правительства Амурской

42

Кроме того, подписано соглашение края. Документ направлен на эфи правительством Приморского ально-экономического развития.

о сотрудничестве в сфере поддерж- фективное использование и развики фундаментальных и поисковых тие научного потенциала региона, научных исследований между РНФ а также на решение задач его соци-

Это стратегическое партнерство открывает для Приморья новые возможности — мы сможем сконцентрировать научные усилия на решении именно тех задач, которые важны для региона: от биоэкономики до технологии извлечения и обогащения полезных ископаемых. Грантовая поддержка региона и РНФ это хороший инструмент развития для наших научных коллективов.

СЕРГЕЙ ДУБОВИЦКИЙ

профессионального образования и занятости населения Приморского края

#сентябрь

РНФ СТАЛ ПАРТНЕРОМ ОБРАЗОВАТЕЛЬНОГО ОНЛАЙН-КУРСА «НАУЧПОП-ЖУРНАЛИСТИКА»

сентябре анонсирован запуск Среди новшеств курса «Научпопнером курса.

лой RT в Десятилетие науки и технологий при поддержке Национальных проектов России, поможет журналистам, студентам, сотрудникам пресс-служб научных организаций и всем желающим создавать доступный и увлекательный контент о науке и технологиях. Участники освоят приемы популяризации научных исследований в разных медиаформатах — от коротких публикаций до телепередач и документальных фильмов.

третьего потока бесплатного журналистика» — партнерство онлайн-курса «Научпоп-журнали- с РНФ. Специально для слушатестика». В этом году РНФ стал парт- лей представители Фонда и ученые, работающие при поддержке РНФ, проведут лекции и практи-Программа, созданная АНО «На- ческие занятия о том, как журнациональные приоритеты» и Шко- листам выстраивать эффективный диалог с исследователями.

Популяризация науки — одно из ключевых направлений работы Российского научного фонда, а сам Фонд является активным участником сообщества научных коммуникаторов. Мы не только поддерживаем передовые исследования по всей стране. но и вместе с нашими учеными стремимся сделать их ближе, понятнее и заметнее для широкой аудитории. Мы собрали накопленный опыт в несколько уроков и заданий для участников курса, чтобы содействовать развитию области научной коммуникации и повышению уровня квалификации ее специалистов.

заместитель генерального директора РНФ

АНДРЕЙ

БЛИНОВ

УЧЕНЫЕ ИЗ ЧЕТЫРЕХ РЕГИОНОВ РОССИИ ПРИНЯЛИ УЧАСТИЕ В «НАУЧНОМ АКСЕЛЕРАТОРЕ нижегородской области: ШКОЛЕ РНФ»

Нижнем Новгороде прошел заявок на гранты и организация «Научный акселератор Ниже- прямого диалога с экспертами. городской области: Школа РНФ». телей Фонда.

Сотрудники вузов и научных ор- Заместитель генерального дирекганизаций Нижегородской, Мо- тора Фонда Андрей Блинов рассковской, Ленинградской и Сверд- сказал об основных направлениях ловской областей слушали лекции, грантовой поддержки, о системе участвовали в мастер-классах и ин- научной экспертизы, особеннотерактивных сессиях от представи- стях конкурсного отбора, а также поделился советами по подготовке заявок. В формате открытого ми-Основная задача акселератора — крофона участники смогли задать развитие навыков подготовки волнующие их вопросы и предложить свои идеи.

зиденте России по науке и образо- научные достижения.

Заместитель начальника управ- ванию Мария Михалева во время ления программ и проектов — мастер-класса рассказала об эффекначальник отдела по связям тивных форматах коммуникации с общественностью РНФ, член Ко- с обществом и средствами массоординационного совета по делам вой информации, а также о том, как молодежи в научной и образова- ученые могут доступно для широтельной сферах Совета при Пре- кой аудитории представлять свои

«Школа РНФ» дала ученым необходимые знания и инструменты, для того чтобы заявить о себе на федеральном уровне, превратить научные идеи в реальные проекты. Сейчас Нижегородская область — лидер по числу проектов, поддержанных РНФ, но нельзя останавливаться на достигнутом.

ЕКАТЕРИНА

СОЛНЦЕВА

заместитель председателя Нижегородской области

РНФ ПРИНЯЛ УЧАСТИЕ В РАБОТЕ РОССИЙСКОГО ФОРУМА «МИКРОЭЛЕКТРОНИКА-2025»

Также было подписано соглаше- перспективных исследований в обпрограмме по финансированию применений.

ние между РНФ и Газпромбанком. ласти нейротехнологий и микро-Документ даст старт совместной электроники для медицинских

Подписание этого соглашения — важный шаг в развитии партнерства между наукой и бизнесом. Объединение ресурсов РНФ и Газпромбанка позволит сконцентрироваться на решении сложнейших задач в области медицинской реабилитации. Мы ожидаем, что поддержанные проекты приведут к созданию прорывных технологий, которые значительно улучшат качество жизни людей.

ВЛАДИМИР БЕСПАЛОВ

сентябре Фонд принял уча- компонентной базы и обеспечения стие в деловой программе безопасности и технологического Российского форума «Микро- суверенитета страны. электроника-2025» — ключевой российской коммуникационной На площадке форума участники пледания и применения электронной дрение научных разработок.

площадки по широкому кругу нарного заседания обсудили ключевопросов стратегии научно-тех- вые вопросы развития электронной нологического развития микро- отрасли, среди которых финансирои радиоэлектронной отрасли, соз- вание, кадровое обеспечение и вне-

Проекты, поддержанные благодаря активному и позитивному сотрудничеству РНФ и Минпромторга, нацелены не на то, чтобы «начать и закончить», а чтобы строить связки между различными частями развития микроэлектроники. Любой проект сегодня должен быть частью какойто общей системы.

АНДРЕЙ ФУРСЕНКО

России, председатель попечительского совета РНФ

//

От гипотезы к научным результатам, которые обретают форму. В рубрике представлены ощутимые результаты исследований и разработки грантополучателей, у которых есть возможность выйти за пределы лабораторий.

2025 ГОД
//
ИЮЛЬ-АВГУСТ-СЕНТЯБРЬ
/
РАЗДЕЛ #3
РАЗРАБОТКА > РЕЗУЛЬТАТЫ
ГРАНТОПОЛУЧАТЕЛЕЙ

... // РАЗРАБОТКА

ТЕХНОЛОГИИ, УСТРОЙСТВА И МАТЕРИАЛЫ, СОЗДАННЫЕ В ЛАБОРАТОРИЯХ

50

ПЕРВАЯ СФЕРИЧЕСКАЯ **МНОГОЭЛЕМЕНТНАЯ АНТЕННА ИЗ** ПЬЕЗОПОЛИМЕРА ДЛЯ ОПТОАКУСТИЧЕСКОЙ ТОМОГРАФИИ

Подробнее о проектах

Это первая в мире сферическая многоэлементная антенна на основе пьезополимера — поливинилиденфторида (PVDF). Она отличается высокой чувствительностью и широкополосностью. Ученые Института прикладной физики имени А. В. Гапонова-Грехова РАН совместно с зарубежными коллегами создали сферический массив из тончайшей пленки поливинилиденфторида. На его поверхности сформировано 512 пьезоэлементов площадью менее 1 мм² каждый. Сегодня это мировой рекорд по плотности упаковки пьезополимерных ультразвуковых антенн.

По сравнению с традиционными пьезокерамическими материалами чувствительность новой антенны к оптоакустическим сигналам увеличилась более чем в десять раз. Это позволило в реальном времени наблюдать движение крови в сосудах различных размеров — от крупных артерий до мельчайших капилляров — с высоким пространственным и временным разрешением.

Разработка может стать основой для новой линейки медицинских приборов, которые позволят без хирургического вмешательства быстро диагностировать серьезные сердечно-сосудистые и нейродегенеративные заболевания. Кроме того, антенна может применяться в устройствах неразрушающего контроля.

← содержание

УСТАНОВКА БЕССЛИТКОВОЙ ПРОКАТКИ-ПРЕССОВАНИЯ

Это установка для изготовления пресс-изделий из сплавов алюминия методом бесслитковой прокатки. Ученые Сибирского федерального университета создали первый в мире агрегат, совмещающий литье, прокатку и прессование. Он позволяет производить из расплава металла новые пресс-изделия, например прутки круглого поперечного сечения различного диаметра. С помощью установки можно получать прутки не только из слитков металла, но и из вторичных отходов алюминиевых сплавов — обрезков и стружки. Это в конечном счете снижает себестоимость готовых изделий.

ТИТАНОВЫЕ СПЛАВЫ С ПАМЯТЬЮ ФОРМЫ. ИЗГОТОВЛЕННЫЕ МЕТОДОМ ЗД-ПЕЧАТИ

Это образцы титановых сплавов с памятью формы, изготовленные методом селективного лазерного плавления. Метод, предложенный учеными Университета науки и технологий МИСИС, в перспецктиве может стать основой для массового применения в ортопедии и травматологии индивидуализированных импланта-TOB.

Лазерная 3D-печать обеспечивает точное воспроизведение требуемой формы медицинских изделий, а модифицированный состав материала — необходимые для практического использования комплекс физико-химических свойств и биологическую совместимость. Этот подход впервые в мире позволил получить эффект сверхупругости с высокой обратимой деформацией в биосовместимом сплаве нового поколения, созданном методом селективного лазерного плавления. Модуль упругости образцов существенно ближе к показателям костной ткани по сравнению с другими титановыми сплавами, полученными традиционными методами.

//

Развитие современной науки позволяет выстраивать все более осязаемые связи между сельским хозяйством, пищевыми технологиями и здоровьем человека.

Фундаментальные исследования в этой области направлены на изучение безопасности новых видов пищевой продукции, а также на создание персонализированных лечебных и функциональных продуктов питания, включая детское.

Один из таких проектов реализуется при поддержке РНФ. О новом поколении отечественных функциональных продуктов питания в интервью расскажет доктор технических наук Ирина Чернуха.

2025 ГОД // ИЮЛЬ-АВГУСТ-СЕНТЯБРЬ / РАЗДЕЛ #4 ИНТЕРВЬЮ: ИРИНА ЧЕРНУХА

... // ИНТЕРВЬЮ

ВЕДУЩИЕ РОССИЙСКИЕ УЧЕНЫЕ И ЭКСПЕРТЫ О СВОЕЙ РАБОТЕ И БУДУЩЕМ НАУКИ

ПРОДУКТЫ НОВОГО ПОКОЛЕНИЯ ДОЛЖНЫ ЗАНЯТЬ ДОСТОЙНОЕ МЕСТО В РАЦИОНЕ РОССИЯН

доктор технических наук. академик РАН, главный научный сотрудник Федерального научного В. М. Горбатова, профессор кафедры «Конструирование функциональных продуктов питания и нутрициологии» Российского биотехнологического университета (РОСБИОТЕХ)

ИРИНА

ЧЕРНУХА

бщество столкнулось с проблемой дефицита питательных веществ в рационе. Овощи, молочные изделия и мясо не всегда могут восполнить потребности организма в витаминах и микроэлементах, что приводит к заболеваниям и снижению качества жизни. Задача науки — скорректировать продукты под индивидуальные потребности человека. В мире развивается направление функциональных и специализированных продуктов с биологически активными веществами, обладающими направленным физиологическим действием.

Продукты нового поколения способствуют снижению давления, регулируют уровень сахара в крови, поддерживают иммунитет и восполняют дефицит аминокислот. В России сегмент таких продуктов невелик, а большая часть ассортимента еще недавно формировалась за счет импорта. При этом в стране есть уникальный научный задел: питание для космонавтов, спортсменов, детей, а также людей с хроническими заболеваниями.

Для преодоления отставания требуется дальнейшее развитие собственной научной базы и технологий. При поддержке РНФ ученые под руководством доктора технических наук, академика РАН Ирины Чернуха создают продукты, обогащенные биологически активными пептидами. Разработки обеспечат переход к новому поколению отечественного функционального и специализированного питания и значительно расширят целевые группы потребителей.

был связан с поиском биологически активных пептидов и белков в тканях животных. Какие задачи ставили и какие результаты получили?

что в тканях организма есть биологически активные вещества — бел- мы. Мы попробовали множество нить биологически активные вещеки и пептиды, которые находятся в спящем состоянии и активируются при необходимости. Долгое время эти вещества считались обломками функциональных белков и неким «пептидным фоном». Но с развитием протеомики появилось понимание механизма появления пептидов в нужном месте организма и в нужное время. Основываясь на научном базисе ФНЦ пищевых систем имени В. М. Горбатова в области создания фармакологических препаратов из органов и тканей сельскохозяйственных животных, мы решили посмотреть, какие белки и пептиды с функциональным действием можно выделить из животных тканей.

// Ваш предыдущий проект Результатом наших первых проектов, поддержанных Фондом, стала созданная методология выделения и проверки активности веществ, обладающих антиоксидантным, антиатеросклеротическим и гипотензивным действием. Проще говоря, они положительно влияют на липид-Таких проектов у нас было не- ный профиль крови, способствуют сколько. Мы основываемся на том, снижению давления, поддерживают

// Какой продукт вы предложили?

Мы сделали паштет. Рецепт выбрали именно из-за удобства сохранения всех компонентов. Все знают, что при тепловой обработке часть мясного сока уходит, и вместе с ним биологически активные вещества. Мы закладывали массу в сыром виде иммунную и эндокринную систе- в банки, чтобы максимально сохра-

>> КЛИНИЧЕСКИЕ ИСПЫТАНИЯ ПОДТВЕРДИЛИ: У ПАЦИЕНТОВ С ИЗБЫТОЧНЫМ ВЕСОМ. ОТЯГОЩЕННЫМ АТЕРОСКЛЕРОЗОМ И ГИПЕРТОНИЕЙ. РЕГУЛЯРНО ПРИНИМАЮЩИХ ПРОДУКТ, ОЖИДАЕМЫЙ ПОЛОЖИТЕЛЬНЫЙ ЭФФЕКТ НАСТУПАЛ ЗА МЕСЯЦ

ного и микробного происхождения для направленного гидролиза тканей и получения пептидов и малых белков и показали, что можем делать продукяяты с биологически активными белковыми веществами, оказывающими комплексное положительное воздействие на организм человека

ферментов животного, раститель- ства и нутриенты. В результате получилась однородная консистенция, в порционной упаковке для разового использования, удобная для употребления. Клинические испытания подтвердили: у пациентов с избыточным весом, отягощенным атеросклерозом и гипертонией, регулярно принимающих продукт, ожидаемый положительный эффект наступал за месяц.

← содержание

> 10 %

доля рынка функциональных продуктов в России

ЛЕЧЕБНО-**ПРОФИЛАКТИЧЕСКОЕ** ПИТАНИЕ

ОБОГАЩЕННЫЕ ПРОДУКТЫ

общие задачи:

- сделать рацион питания более полноценным
- предотвратить дефицит полезных веществ. нутриентов

ФУНКЦИОНАЛЬНЫЕ ПРОДУКТЫ

специальные задачи:

- снизить артериальное
- нормализовать уровень сахара в крови
- обеспечить питательными веществами мышцы

давно вы занимаеживотными тканя ми и почему решили переключиться на раститель ное сырье?

Животными тканями я занимаюсь всю научную жизнь: с юности хотелось изучать биологию, возможность воздействовать на здоровье и изучать биохимические механизмы. У животного и растительного сырья есть общий аспект: в процессе выращивания свиней и бычков, нута и рапса мы можем придать им нужные свойства, обогащая микроэлементами. Причем формировать состав сельскохозяйственного сырья возможно за счет лиза сократилось значительно. только внешнего воздействия: у животных — за счет кормов и ус- // Какие задачи стоят перед ловий содержания, у растений за счет удобрений и состава почвы. Я в данном случае не рассматриваю генетику и селекцию.

можно быстрее получить результат. Кроме того, нам было интересно посмотреть другие типы белков. тому что они хорошо аккумулируют элементы. Принцип работы остается тем же: ферментативная обраактивных веществ.

На этом этапе произошел новый виток развития наших научных возможностей и методологии, связанный с применением биоинформатики. Сначала in silico — с использованием компьютерного моделирования — мы смотрим, какие ферменты лучше использовать, а уже затем испытываем лучшие композиции на практике. Это позволяет значительно сократить труд, время и средства: не нужно проводить десятки проб в лаборатории, чтобы подобрать условия.

Можно ли сравнить сроки работы с животными и растительными источниками?

Прямо сравнивать некорректно. Поросенка нужно выращивать не меньше пяти месяцев, и только на последнем этапе добавлять в рацион корма, влияющие на состав и свойства мяса. Растения дают результат быстрее, а биоинформатика значительно сокращает подготовку. Если раньше нужно было брать образец, добавлять один фермент в нескольких концентрациях, потом — второй, третий, то сейчас время подбора условий ферменто-

вами в рамках нового гранта РНФ?

Мы разрабатываем технологии производства продуктов, обогащенных У растений есть важное преимуще- гидролизатами белков. Они выделество — они быстрее растут, а значит, ны из нута, рапса и конопли, разрешенной к использованию. С помощью ферментов изменяем состав, чтобы получить нужные биологи-Мы переключились на бобовые, по- чески активные вещества. Наша задача — создать линейку продуктов, которые можно будет называть функциональными до той поры, ботка для выделения биологически пока не проведем клинические испытания и не подтвердим именно лечебный эффект.

// Какую нишу могут занять подобные продукты на рынке здорового пита-

Я бы все-таки говорила не о здоровом питании, а о лечебно-профилактическом. Технологи выделяют обогащенные и функциональные продукты. К первым относят продукты с добавлением витаминов, минеральных веществ, клетчатки. Они делают рацион более полноценным,

предотвращают дефицит полезных что объемы производства продуквеществ нутриентов. Функциональные, или лечебные, продукты нуж- чивать. ны для решения специальных задач: снизить давление или сахар в крови, обеспечить питательными веществами мышцы или мозг.

Мы хотим направить усилия на прошение различных систем организма. тов, особенно для пожилых людей ных белков. Такой выбор позволяет

Какие продукты с растительными гидролизатами будете создавать в первую очередь?

тов нового поколения нужно увели-

филактику, стабилизацию или улуч- В перспективе это могут быть мучные изделия, напитки, паштеты, Полагаю, рынок должен принять а в текущем проекте разрабатыванашу разработку на ура, поскольку ем кашу с химически синтезиросегодня в стране ощущается огром- ванными пептидами и вареную колный дефицит подобных продук- басу с гидролизатами раститель-

>> КАЖДЫЙ ДЕНЬ ДЛЯ ПОДДЕРЖАНИЯ ЗДОРОВЬЯ НУЖНО СЪЕДАТЬ ТАРЕЛКУ КАШИ, БУТЕРБРОД С ПАШТЕТОМ ИЛИ ДВЕ СОСИСКИ, ОБОГАЩЕННЫЕ НЕОБХОДИМЫМИ ИМЕННО КОНКРЕТНОМУ **ЧЕЛОВЕКУ ВЕЩЕСТВАМИ**

и пациентов в стационарах. Мно- сохранить исходные пептиды и погие пенсионеры покупают детское лучить прогнозируемый резульпитание, потому что оно мягкое и тат. Как и паштет, колбаса во влалегко усваивается. Наши паштеты го- и паронепроницаемой оболочке и каши могут занять эту нишу. Так становится закрытой системой, что

обеспечивает надежное сохранение действующих веществ. Кроме того, кашу и колбасу можно делать для удобства порционными, чтобы людям было понятно: каждый день для поддержания здоровья нужно съедать тарелку каши, бутерброд с паштетом или две сосиски, обогащенные необходимыми именно конкретному человеку веществами.

// Влияют ли гидролизаты на вкус?

Да, немного. От растительного сырья может появиться легкий ореховый привкус, от животного вкус переваренного мяса, который не все любят. Гидролизаты могут горчить. С другой стороны, по опыту предыдущих грантов мы видим, что люди готовы смириться со вкусовыми особенностями, когда понимают пользу продукта. Поэтому это вопрос для обсуждения — как лучше поступить: оставлять «чистый» вкус или добавлять привычные ароматизаторы вроде ванилина. Но тогда важно убедиться, что они

← содержание

56

не влияют на действие продукта. Так что это целое поле для работы технологов и диетологов, а также для стратегических решений.

// Вы нацелены на создание демонстрационного продукта или рассчитываете на массовое внедрение?

Конечно, на массовое. Я убеждена: лучше есть привычную еду с профилактическим эффектом и принимать меньше лекарств. Функциональные продукты содержат не только полезные пептиды, но и обычные белки, жиры, углеводы, витамины. Их легко включить в рацион без перестройки систем организма, потому что мы практически не меняем привычную рецептуру.

// Насколько рынок заинтересован в продуктах нового поколения? Можно ли выразить эту потребность в тоннах или рано об этом говорить?

Сейчас я не готова оперировать такими величинами, как тонны и килограммы. Хочу лишь отметить, что рынок функциональных продуктов в России небольшой — он не превышает 10%. Причем рынок еще и очень сегментирован: хорошо раз- В отличие от зарубежной практи- лечебных и профилактических провивается питание для спортсменов, для детей, а вот для стационаров и реабилитационных центров ассортимент продуктов пока ограничен.

// Могут ли гидролизаты использоваться не только в пище, но и, например, в кормах?

Это возможно, но экономически нецелесообразно: гидролизаты — дорогой продукт. Логичнее и перспективнее стимулировать работу микробиоты кишечника животных, чтобы получать целевые метаболиты уже

добавок, а составления такой схемы кормления, при которой корм знаем друг друга. Сегодня работа стимулирует нужные процессы для выработки биологически активных биохимию и медицину, и только пептидов, обогащая органы и тка- в этом содружестве можно создани животных нужными человеку компонентами.

в организме. Это вопрос не просто Круг специалистов в области пищевых технологий невелик, мы хорошо все больше объединяет технологию, вать продукты, нужные людям. Мы действительно трудимся не для

>> ПЕРЕД НАМИ СТОИТ МАСШТАБНАЯ ЗАДАЧА повышение продолжительности жизни И АКТИВНОЕ ДОЛГОЛЕТИЕ НАСЕЛЕНИЯ

При работе с животным сырьем нужно учитывать еще один важный момент. После убоя происходит этап созревания, когда мышечная ткань превращается в мясо. В процессе ав- сии. Перед нами стоит масштабная толиза внутренние ферменты начинают атаковать белки своих тканей. ности жизни и активное долголетие Научившись направлять этот про- населения. Возможно, это звучит цесс на выработку биологически ак- пафосно, но именно этим мы рукотивных пептидов, мы сможем получить нужные нам компоненты. Это еще одно направление исследований.

Насколько сильны отечественные научные школы в области пищевых технологий?

В Советском Союзе развитие науки о пищевых продуктах традиционно велось в промышленных научноинститутах. исследовательских где исследования постепенно сосредоточились в университетах, в нашей стране сохранились сильные индустриальные центры, что дает отечественной прикладной науке фору и обеспечивает высокий объем исследований.

конкретного индустриального партнера, не для отдельной отрасли и не для маркетологов — мы держим в фокусе население всей Росзадача — повышение продолжитель-

// Есть ли у России шанс занять нишу на глобальном рынке функциональных продуктов питания за счет ваших и других разработок?

Безусловно. К сожалению, в последние годы сошло на нет тесное общение с зарубежными коллегами. Наши знания в области технологии дуктов в целом выше. Например, мы выпустили большое количество препаратов с биологически активными компонентами печени, мозга, слизистой кишечника. А на Западе эти ткани долгое время использовали в основном на корма животным,

БЕЗ ПОДДЕРЖКИ РОССИЙСКОГО НАУЧНОГО ФОНДА МЫ БЫ НЕ СМОГЛИ ДОСТИЧЬ РЕЗУЛЬТАТОВ ТАК БЫСТРО

Паштеты и каши. разработанные учеными, помогут улучшить работу различных систем организма и станут профилактическим средством

поскольку считали это нецелесообразным, неприемлемым для питания человека, и лишь недавно заговорили об их пользе.

вые школы питания, и в чем-то их традиции созвучны нашим. С точки зрения технологий и комплексности подхода российские ученые занимают достойные позиции. Наши продукты востребованы в восточных странах: коллеги используют наши разработки и видят перспективу их применения для профилактики, лечения и детского питания. Однако сегодня достаточно трудно прогнозировать дальнейшие пертов, несмотря на целый портфель сильных разработок и очевидный спрос потребителей.

// Почему?

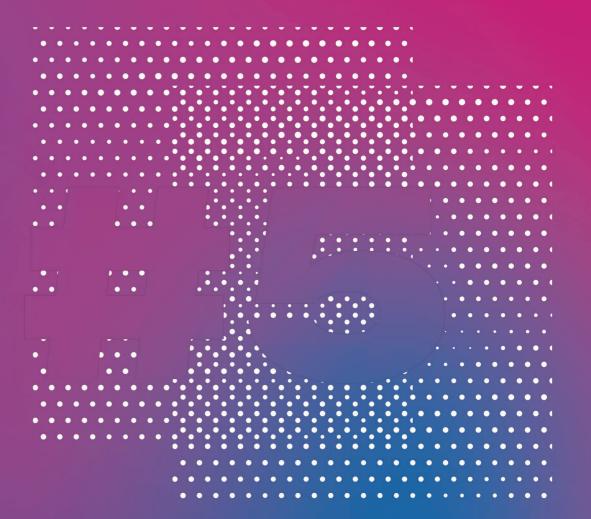
Основная проблема заключается в производстве: функциональное питание неизбежно будет дороже обычного. Поэтому для развития направления необходимо государственное содействие предприятиям, готовым выпускать лечебно-профилактические продукты в промышленных масштабах.

Как поддержка Фонда по- в материалах студенческих конфевлияла на развитие ваших исследовательских идей?

В Индии и Китае существуют веко- Я не покривлю душой, если скажу, что все результаты получены благодаря грантам Российского научного фонда. Во-первых, мы смогли поддержать и сохранить молодежь. Во-вторых, внедрили новые методики, ранее не используемые в отрасли и поставленные благодаря грантовой поддержке. Испытываем продукты на моделях алиментарно-зависимых заболеваний, которые обусловлены особенностями питания. В-третьих, мы закупили спективы функциональных продук- современное лабораторное оборудование, обеспечивающее проведение наших исследований на новом научном и методическом уровнях.

> Также мы научились иначе формулировать идеи и писать статьи. Сначала было сложно подавать публикации в западные журналы, потому что наш подход к описанию технологических аспектов и методологий исследования пищевых про- гащенных, специализированных дуктов сильно отличался от при- это позволило бы быстрее внедрять нятого в западном научном мире. Сегодня, когда читаешь публикации в отечественных журналах,

ренций, выделяешь статьи грантополучателей. Эти работы кардинально отличаются: они включают статистический анализ, описание методологии, исследование механизмов, сопоставление с другими исследованиями и широкий литературный обзор. Важны и апробации — доклады на конференциях, в том числе международных, что обеспечивает признание результатов. Без поддержки Российского научного фонда мы бы не смогли достичь результатов так быстро.


// Поделитесь, пожалуйста, своей научной мечтой.


Если говорить о внешних факторах, хотелось бы более простого обмена научными данными с коллегами по всему миру. Во внутренней работе мечтаю об упрощении процедуры запуска на российский рынок пищевых продуктов, в первую очередь положительно влияющих на системы и физиологию потребителя — функциональных, оборазработки в отрасль.

← содержание

... // МНЕНИЕ

ГРАНТОПОЛУЧАТЕЛИ ФОНДА О ТРЕНДАХ В НАУКЕ

мнение

СЕЛЬСКОХОЗЯЙСТВЕННЫЕ HAYKI

последние годы Россия уверенно наращивает темпы в аграрном секторе, укрепляя свои позиции как одного из гарантов глобальной продовольственной безопасности. Сегодня перед отраслью стоит цель: к 2030 году увеличить производство продуктов на четверть, а экспорт — в полтора раза. Добиться этого можно только за счет технологического рывка в сельском хозяйстве — ускоренного развития селекции и генетики, биотехнологий и других важных направлений.

Ключевая роль в этих процессах отводится науке. Научные коллективы создают новые высокопродуктивные гибриды, обеспечивают аграриев современными ресурсами, разрабатывают инновационные решения для защиты растений и животных, а также улучшают состояние почв и повышают устойчивость сельскохозяйственных систем.

При поддержке Российского научного фонда ученые работают в рамках передовых направлений сельскохозяйственных наук. По количеству заявок ежегодно лидируют агробиотехнологии, ветеринария, растениеводство и животноводство, которые формируют сегодня основу настоящего и будущего технологического развития аграрного сектора.

В выпуске дайджеста «Открывай с РНФ» грантополучатели Фонда рассказывают о ходе и результатах проектов, которые помогают улучшать качество почв и повышать их экологическую безопасность, выявлять идеальные условия для выращивания винограда и яблок, развивать стратегию молекулярной аквакультуры для здоровья и качества рыбы. использовать репродуктивные технологии для развития коневодства, а также внедрять цифровые методы для прижизненной оценки крупного рогатого скота.

АГРОЭКОЛОГИЧЕСКИЕ РЕСУРСЫ

россия обладает разнообразными аграрными ресурсами, которые формируют основу продовольственной безопасности и поддерживают развитие сельскохозяйственного сектора. Важно не только осваивать эти ресурсы, но и совер-

> шенствовать методы их эффективного использования и защиты. Так, природно-климатические особенности Крымского полуострова открывают возможности для развития винодельческой отрасли за счет поиска оптимальных условий выращивания сортов с учетом климатических изменений. Вместе с тем главным ресурсом сельского хозяйства остается почва, которая подвержена загрязнению и истощению. В рамках проектов, поддержанных РНФ, ученые подбирают идеальные факторы для возделывания винограда и разрабатывают передовые методы сохранения и восстановления почвенного плодородия.

ЕВГЕНИЙ РЫБАЛКО

кандидат сельскохозяйственных наук, ведущий научный сотрудник Всероссийского национального института виноградарства и виноделия «Магарач» НИЦ «Курчатовский институт»

ЗНАНИЯ О ЗАКОНОМЕРНОСТЯХ ФОРМИРОВАНИЯ ВИНОГРАДНЫХ ТЕРРУАРОВ позволят эффективно ИСПОЛЬЗОВАТЬ РЕСУРСЫ И ПОЛУЧАТЬ ХОРОШИЙ УРОЖАЙ

Глобальное изменение климата влияет на то, как растет и развивается виноград, когда он зацветает и созревает, а также на состав ягод. Это отражается на питательной ценности винограда, качестве урожая и в итоге на вкусе и характеристиках вина. Чтобы страна имела собственное качественное вино и не зависела от импорта, нужно точнее изучать,

где именно можно выращивать тот или иной сорт винограда. Важно подобрать такие районы, где климат и природные условия лучше всего подходят для растений. Это позволит эффективно использовать ресурсы, получать хороший урожай и выпускать винодельческую продукцию высокого качества

Карточка проекта

← содержание

Одно из ключевых направле- В настоящий момент в России ний стратегии научно-технологиче- утверждено деление земель, приского развития России — переход годных для выращивания винограда, к высокопродуктивному и экологи- на зоны, районы и терруары. Начески чистому агрохозяйству, про- помню, что терруар — это комплекс изводство безопасных и качествен- природных факторов, влияющих ных продуктов питания, в том числе на характеристики винограда и вина, за счет создания отечественных вы- таких как климат, почва и рельеф. сокоэффективных цифровых, интел- При этом границы терруаров в стралектуальных технологий производ- не до сих пор не определены. Кроства и переработки сельскохозяй- ме того, пока нет единой методики ственного сырья. В виноградарстве определения терруаров, поскольку и виноделии это выражается в раз- взаимодействие растения с окрувитии сектора высококачественного производства с географическим и органическим статусом.

жающей средой слишком сложно. Задача науки — выявить терруары и дать им характеристику, а также

3D-визуализация терруара. Источник: Евгений Рыбалко

определенных типов вин.

появление и развитие географиче- ровом виде, удобном для анализа. ских информационных систем —

рекомендовать оптимальный для компьютерных программ для анаданных природных условий сорт лиза, хранения и визуализации винограда и направление его пере- пространственных данных. Сейчас работки. Это может быть употребле- важным источником информации ние в свежем виде или производство для исследований являются данные дистанционного зондирования Земли. Они позволяют получать Сегодня в арсенале ученых появ- сведения об особенностях рельеляется все больше инструментов фа, климата и других параметров и методов для проведения иссле- на больших территориях в разные дований. Большую роль сыграло временные промежутки и в циф-

Об актуальности этих вопросов сви- индексов — Хуглина, сухости детельствует большое количество и прохладности ночей. Индекс Хугисследований, посвященных изуче- лина показывает, хватает ли тепла нию влияния агроэкологических ус- в регионе для вызревания винограловий на формирование качествен- да. Если тепла мало, ягоды не наканых показателей урожая, разработку пливают сахар, если слишком мнометодик зонирования территорий го — вино теряет кислотность. Ини выделение наиболее благоприят- декс сухости отражает, достаточно ных для винограда участков. На- ли влаги для лозы. При недостатпример, пространственная измен- ке влаги требуется дополнительчивость климата в винодельческих но орошать поля или выращивать районах может быть значительной. устойчивые к засухам сорта. Индекс Причем некоторые регионы вклю- прохладности ночей помогает оцечают в себя до пяти климатических инть, насколько ночные температуклассов, пригодных для виноградар- ры позволяют ягодам «отдохнуть» ства. При этом применяется много от жары. Прохладные ночи помогаразных подходов и нет единой си- ют сохранить аромат и кислотность стемы: различаются методы, по ко- винограда, что особенно важно для торым сравнивают природные усло- белых сортов. вия между метеостанциями, используются разные наборы факторов для зонирования винодельческих территорий.

В рамках проекта, поддержанного РНФ, мы планируем выделить на Крымском полуострове терруары по критериям Международной После работы с показателями мы поорганизации винограда и вина. Для строим карты для каждого отдельэтого нужно проанализировать за- ного индекса, а затем объединим кономерности пространственного их в комплексную карту. В итоге варьирования трех климатических будут сформированы рекомендации

>> ТЕРРУАР — ЭТО КОМПЛЕКС природных факторов, влияющих НА ХАРАКТЕРИСТИКИ ВИНОГРАДА И ВИНА, КУДА ВХОДЯТ КЛИМАТ, ПОЧВА, РЕЛЬЕФ

развития проекта станет сравнительный анализ качественных параметров виноградарско-винодельческой продукции в терруарах и оптимизация ее производства с учетом агроэкологических ресурсов местности.

Мы рассчитали значения изуча-

емых климатических индексов по данным 15 метеорологических станций Крымского полуострова за последние 30 лет. Выявили факторы, которые оказывают влияние пространственную изменчивость индексов: параметры рельефа, широта местности, наличие поблизости крупных водных объвинограда и направлению использо- ектов и расстояние до них и других. Построили цифровые карты пространственного распределения этих факторов. Вывели математические модели, описывающие влияние орографических, географических и гидрологических параметров местности на величину изучаемых климатических индексов. На основе этой информации методами геоинформационного моделирования построили цифровые карты пространственного распределения индексов Хуглина, сухости и прохладности ночей. У этих карт высокая пространственная детализация.

Результаты исследований могут Сейчас растет интерес к вопросам выделения терруаров как со стороплатформой для структурной реор- ны фундаментальной науки, так ганизации сырьевой базы виноде- и со стороны практиков — производителей сельскохозяйственной продукции. Поэтому мы ждем в ближайшее время получения новых знаний о закономерностях фундаментальные формирования терруаров, что познания лягут в основу будущих на- служит основой для разработки меучных исследований в сфере вино- тодологий выделения и определеградарства, виноделия и агроэколо- ния оптимального направления их

вания урожаев для каждого участка, предназначенного под виноградники. Это позволит рациональнее использовать природные ресурсы территории и раскрыть биологический потенциал сортов, что повысит эффективность виноградарства и виноделия в России.

по оптимальному набору сортов

>> РАЗРАБОТАННЫЕ РЕКОМЕНДАЦИИ ПОЗВОЛЯТ РАЦИОНАЛЬНЕЕ ИСПОЛЬЗОВАТЬ ПРИРОДНЫЕ РЕСУРСЫ КРЫМА И РАСКРЫТЬ БИОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ СОРТОВ **ВИНОГРАДА**

служить научно-методологической лия для устойчивого развития, в том числе с использованием цифровых технологий при принятии решений.

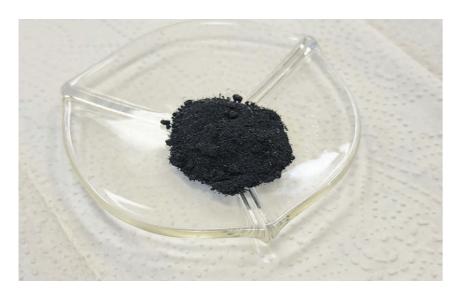
Полученные гии. Перспективным направлением использования. •

ТАТЬЯНА

кандидат биологических наук, ведущий научный сотрудник лаборатории «Агробиотехнологии для повышения плодородия почв и качества сельскохозяйственной продукции» Южного федерального

ПОЧВА БУДЕТ **РАССМАТРИВАТЬСЯ** НЕ КАК БЕЗЛИКИЙ СУБСТРАТ, А КАК ЖИВОЙ ВОСПРОИЗВОДИМЫЙ РЕСУРС

Современное почвоведение и сель- экономичного и точного использоентированной модели к биоинжене- к стрессам. рии почв, направленной на решение задач их восстановления, повышение плодородия и безопасности. Это стало возможным благодаря синергии цифровых, геномных и нанотехнологий, что позволяет перейти к устойчивому высокопродуктивному земледелию. Именно этот комплексный подход помогает ученым решать такие амбициозные задачи, как регенеративное земледелие, превращая почву из пассивного субстрата в активный и воспроизводимый капитал.


Последние достижения науки в обриалов и биотехнологий позволяют развивать сельское хозяйство путем разработок и внедрения в агрономическую практику мультифункциональных платформ. Они способны к связыванию токсичных загрязнителей, таких как тяжелые металлы, а также являются носителями важнейших агрохимических препаратов с контролируемым высвобождением их в прикорневой зоне вольственной безопасности за счет

ское хозяйство переживают фунда- вания препаратов, повышения уроментальный сдвиг: от химико-ори- жайности и устойчивости культур

В рамках проекта, поддержанного РНФ, наш коллектив разрабатывает и всесторонне исследует многофункциональную систему комплексной доставки агрохимических препаратов. Она направлена на повышение продуктивности и стрессоустойчивости зерновых культур в условиях засушливого климата. В основе системы лежат металл-органические каркасы — класс современных гибридных материалов с регулируемой пористостью. Они состоят из металлических и металл-кислородных центров, связанных между собой ласти нанотехнологий, новых мате- органическими молекулами-линкерами в трехмерный каркас, пронизанный полостями и каналами. Эти полимеры имеют самые высокие сорбционные характеристики среди всех пористых материалов: площадь удельной поверхности до 10 000 м²/г. По размеру это сопоставимо с полутора футбольными стадионами, помещенными в один грамм вещества. Благодаря этим свойствам каркасы могут выступать как сверхэффекрастений. Внедрение таких разра- тивные ловушки для загрязняющих боток в сельское хозяйство имеет веществ, снижая токсичность почвы решающее значение для продо- и улучшая ее экологическую безо-

Карточка проекта

Предполагается, что система бу- глутаминовая кислота). Синергия дет состоять из композитного компонентов и их контролируемое материала: пористого металл-ор- высвобождение повышают эфганического каркаса на основе фективность доставки ретарданта ионов железа и тримезиновой кислоты MIL-100 (Fe) и биосовме- Особое внимание в проекте уделястимого углеродистого носителя — ется разработке гидрофильного по-

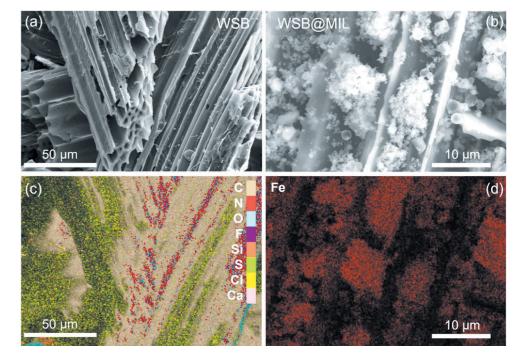
КАРКАСЫ МОГУТ ВЫСТУПАТЬ КАК СВЕРХЭФФЕКТИВНЫЕ ЛОВУШКИ для загрязняющих веществ, снижая ТОКСИЧНОСТЬ ПОЧВЫ И УЛУЧШАЯ ЕЕ ЭКОЛОГИЧЕСКУЮ БЕЗОПАСНОСТЬ

> собой углеродистый материал, который получают из растительного сырья — древесины, соломы, лузги, Ставропольский край, Республика шелухи, кожуры и прочего — мето- Калмыкия, часто подверженных дом пиролиза, то есть нагревания без доступа кислорода. В качестве агрохимического препарата для растениям планируется использовать хлормекватхлорид — один из наиболее широко применяемых новых культур.

> элементами, такими как цинк, пористости из разнообразных отмарганец, молибден, затем по- ходов растениеводства — шелухи крываем слоем хитозана и сме- риса, лузги семян подсолнечника

> и снижают стрессовую нагрузку. крытия на основе высокопористых ковалентных органических каркасов (СОГ) для композита, которое может способствовать удержанию влаги. Это делает систему ценной в условиях засушливого климата, когда обычные препараты быстро теряют эффективность. Разработбиочара. Последний представляет ка особенно актуальна для южных регионов России, таких как Астраханская и Ростовская области, резким температурным колебаниям и долгосрочным засухам.

> внедрения в композит и доставки За три года мы разработали месинтеза высокотехнологичных композитных наноматериалов с управляемыми свойствами: они ретардантов (регуляторов роста), одновременно выполняют функпредотвращающих полегания зер- цию сорбента и носителя действующих веществ. Также мы представили технологию получения Мы обогащаем композит микро- биочара с заданными параметрами сью аминокислот (глицин, пролин, и соломы пшеницы, а также таких


проблемных отходов, как осадки ландшафтов. В дальнейшем мы разсточных вод. Для каждого типа работаем методики модификации сырья подобраны оптимальные ус- этих функциональных нанокомполовия пиролиза: температура, ско- зитов, чтобы они лучше подходирость нагрева и время.

На основе проведенных многочис- невой зоной растений. ленных лабораторных и вегетацина основе биочара, нанокомпозита и десятилетия — от экстенсивного ленных и сельскохозяйственных вер роста и ответ на глобальные

ли к агрохимическим препаратам, а также лучше усваивались прикор-

онных экспериментов мы предло- Сельское хозяйство переживает сежили концепцию создания много- годня, пожалуй, самую значительфункциональной наноплатформы ную трансформацию за последние наноконтейнера, позволяющей под- подхода двигаемся к высокоточному, бирать оптимальные виды и дозы технологичному и, что крайне важно, для загрязненных почв промыш- устойчивому земледелию. Это драй-

Микрофотографии нанокомпозита. Источник: Vladimir Polyakov et al. / **Environmental Science** and Pollution Research,

>> появятся услуги по созданию ИНДИВИДУАЛЬНЫХ «МИКРОБИОЛОГИЧЕСКИХ **КОКТЕЙЛЕЙ» ДЛЯ КАЖДОГО КОНКРЕТНОГО** поля

вызовы. И здесь я бы выделила нагрузки.

Что можно ожидать в ближайшие 5-10 лет? Я вижу несколько четких векторов развития. Во-первых, будущее за интеллектуальными технологиями, как и во многих науках. Это разнообразные модели плодородия почвы, климата, урожайности. Создание цифровых двойников почв основа продовольственной безопас- и полей, которые позволят моделировать сценарии и предсказывать результаты до посева культур.

несколько ключевых трендов. Первый — зеленый переход и агроэкология, в рамках которых растет осознание того, что здоровье почвы — это ности. Второй — внедрение биопрепаратов (биоудобрений, биопестицидов) для снижения химической

← содержание

68

астники исследовательского сточник: Владимир Поляков

МЫ РАЗРАБОТАЛИ МЕТОД СИНТЕЗА КОМПОЗИТНЫХ НАНОМАТЕРИАЛОВ С УПРАВЛЯЕМЫМИ СВОЙСТВАМИ, ОДНОВРЕМЕННО ВЫПОЛНЯЮЩИХ ФУНКЦИЮ СОРБЕНТА И НОСИТЕЛЯ ДЕЙСТВУЮЩИХ **ВЕЩЕСТВ**

> дрение автономной техники для В-третьих, развитие почвенной ми- 5-10 лет фокус сместится с максиные решения, где понимание роли роятно, появятся услуги по созда- где почва будет рассматриваться нию индивидуальных «микробио- не как безликий субстрат, а как жилогических коктейлей» для каждого конкретного поля. Они помогут растениям лучше усваивать элементы питания и противостоять патогенам.

> родных почв на душу населения планеты все время уменьшается, я уверена: будущее — за искусственными почвами. Об этом говорит все мировое сообщество. Такую амбициозную задачу поставили перед собой мы в Южном федеральном универ-Во-вторых, это роботизация и вне- ситете под руководством доктора биологических наук, профессора выполнения точечных операций. Татьяны Минкиной. В итоге через кробиологии и персонализирован- мальной урожайности любой ценой устойчивую рентабельность микробиома станет ключевым. Ве- и экологическую ответственность, вой воспроизводимый актив. 🕻

И в связи с тем, что площадь плодо-

АГРОБИОТЕХНОЛОГИИ

гробиотехнологии — это совокупность передовых меж-**—** дисциплинарных подходов на стыке технических, биологических, химических, сельскохозяйственных и других наук. Применение биотехнологических методов позволяет повысить качество и продуктивность агропроизводства во всех его областях — от растениеводства и животноводства до аквакультуры. Грантополучатели РНФ активно используют эти методы, например для повышения урожайности пшеницы, гороха и яблок.

НАСТОЯЩИЙ СУВЕРЕНИТЕТ СТРАНЫ ОПРЕДЕЛЯЕТСЯ НЕ НЕФТЬЮ ИЛИ ЯДЕРНЫМ ОРУЖИЕМ, А СПОСОБНОСТЬЮ

наук, заведующий отделом агротехники и агрохимии сада Федерального научного центра имени И.В.Мичурина

Примерно в середине XIX — начале XX века началась своеобразная революция, связанная с открытиями в области минерального питания растений. Они заложили основы агрохимии и позволили перейти от эмпирического земледелия к управляемому процессу. Однако сам процесс внедрения удобрений оказался далеко не простым, каким остается и сейчас: одно средство в одних условиях дает впечатляющий эффект, а в других — почти нулевой, что подчеркивает сложность и многогранность аграрного производства.

ПРОКОРМИТЬ СЕБЯ

В СССР велись масштабные исследования в области изучения удобрений, но разработанные микробиологические препараты так и не стали массовой практикой ни в России, ни в мире. Однако сегодня специалисты возвращаются к этим идеям, что обусловлено не столько ностальгией, сколько реальными вызовами: истощением природных ресурсов, в частности фосфорных месторождений, и необходимостью снижать антропогенную нагрузку на почвы. В 2023 году мировой рынок удобрений оценивался в 202 млрд долларов, при этом доля микробиологических удобрений составляла всего около 0,5 млрд в 2021 году. К концу десятилетия прогнозируется удвоение этого сегмента.

Карточка проекта

ные, например, переводить недо- до подавления патогенов. Но их ми удобрениями. ступные формы фосфора в усвояемые растениями. Это особенно актуально для регионов с кислыми почвами, где интенсивное садоводство и капельное орошение с одновременным внесением

Важно понимать, что микробиоло- удобрений усиливают закисле- применение сопряжено со множе-

гические препараты — это не удо- ние. При этом такие препараты ством нюансов: живые организбрения в классическом смысле: не вызывают избыточного загряз- мы чувствительны к температуре, они не содержат азота, фосфора нения почвы и могут оказывать влажности, составу почвы, взаиили калия, а привносят в почву сопутствующие положительные модействию с другими микроорживые микроорганизмы, способ- эффекты — от стимуляции роста ганизмами и даже с минеральны-

> МИКРОБИОЛОГИЧЕСКИЕ УДОБРЕНИЯ НЕ СТАНОВЯТСЯ ПАНАЦЕЕЙ, НО ПРЕДСТАВЛЯЮТ СОБОЙ ВАЖНЫЙ ИНСТРУМЕНТ В СТРЕМЛЕНИИ К БОЛЕЕ УСТОЙЧИВОМУ, ЭКОЛОГИЧНОМУ И РЕСУРСОСБЕРЕГАЮЩЕМУ ЗЕМЛЕДЕЛИЮ

Опыты показывают: совместное внесение микробиологических и минеральных средств может снижать эффективность первых, тогда как раздельное применение дает лучший результат.

Внесение микробиологических удобрений в приствольную полосу. Источник: авторы исследования

>> РЫНОК МИКРОБИОЛОГИЧЕСКИХ И ОРГАНИЧЕСКИХ УДОБРЕНИЙ БУДЕТ РАСТИ В РАЗЫ. ЭТО НЕ ПРОСТО **ТРЕНД, А НЕОБХОДИМОСТЬ**

зависит не только от удобрений, ночные препараты. У каждого свой но и от условий закладки плодовых состав. Есть удобрения, состоящие почек за год до сбора, устойчивости из нескольких микроорганизмов к зимним холодам и защиты от бо- фиксирующие азот, растворяющие лезней в период вегетации. Поэто- фосфор, повышающие доступность му агрономия по-прежнему соче- калия. А есть однокомпонентные, тает в себе элементы точной науки которые не влияют напрямую на кои своего рода колдовства — искус- личество поступающих к растению ства управлять множеством пере- минеральных веществ, а подавляют менных, большинство из которых болезнетворную микрофлору, то есть человек контролировать не в силах. защищают корни от гнили.

ческие удобрения не становятся Наша задача — понять, как внесение таких культур влияет не только на урожай, но и на саму почвенную микрок более устойчивому, экологичному биоту. Это крайне важно, поскольку, и ресурсосберегающему земледе- с одной стороны, мы говорим об эко- удобрения вносим через капельлию. Их перспектива — не в замене погизации, с другой — никто толком традиционных методов, а в их разу- не знает, какие долгосрочные послед- ские — отдельно, гербицидником мном сочетании, в поиске баланса ствия может иметь регулярное вне- в приствольную полосу, так как их между научной строгостью и при- сение «чужих» штаммов. Например, совместное применение снижает

розками, засухой или дождливым В рамках проекта, поддержанно- есть данные о многолетнем применелетом. Урожай яблони, например, го РНФ, мы тестируем разные ры- нии микробиологического препарата, который сначала обеспечивал рост урожайности, а потом стал угнетать культуры, возможно, из-за подавления аборигенной микрофлоры. Поэтому наши исследования рассчитаны не на один год: урожай яблони — это результат как текущего сезона, так и условий предыдущих лет, особенно закладки плодовых почек.

> Мы работаем с двумя типами садов: традиционным — с объемными кронами и большим расстоянием между деревьями сорта «ветеран» и интенсивным, где посажен сорт «рождественское». Минеральные ное орошение, а микробиологиче-

Научный коллектив лаборатории (слева направо), нижний ряд: м. н. с. Екатерина Грошева, руководитель лаборатории Андрей Кузин, с. н. с. Марина Маслова. Верхний ряд м. н. с. Владимир Назаров, м. н. с. Светлана Карпухина. м. н. с. Анастасия Шмакова. Источник: авторы исследования

Таким образом, сельское хозяйство

остается областью, где наука стал-

кивается с непредсказуемостью

природы: даже самый точный расчет может быть сведен на нет замо-

В этих условиях микробиологи-

панацеей, но представляют собой

важный инструмент в стремлении

родной сложностью.

Кандидат сельскохозяйственных наук Иван Шамшин в лаборатории. Источник: авторы исследования

АНДРЕЙ НАГДАЛЯН

кандидат технических наук, декан факультета сельского хозяйства Северо-Кавказского федерального университета, директор ООО «СКФУ Инжиниринг»

И РАЗВИТИЕ РАСТЕНИЙ. **А ТАКЖЕ ОБОГАЩАЮТ** ИХ ПОЛЕЗНЫМИ ВЕЩЕСТВАМИ

эффективность. Мы тестируем три микробиологических препарата в сочетании с пониженными дозами минеральных удобрений, чтобы найти баланс, позволяющий снизить дозы химии без потери урожайности. Также мы исследуем удобрения в лаборатории: в контролируемых ционное известкование не всегда не нефтью или ядерным оружием,

логических и органических удо- и подавления патогенов. брений будет расти в разы. Это не просто тренд, а необходи- Однако сегодня российский ры- в масштабах агросистемы. Как говомость. За последние десятиле- нок еще невелик, а эффективных, тия в Центральном черноземье по-настоящему и на юге страны заложено огром- штаммов недостаточно. Как не хва- Филеас Фогг: «Жизнь — цепь, а меное количество садов, но часто тает и исследований для разработки лочи в ней — звенья. Нельзя звену без должного научного сопровождения. Многие саженцы завозили из-за рубежа — например из Сербии, поэтому они плохо адаптированы к нашим условиям. му капельного орошения, особен- но важна, особенно на фоне исчер- кадрами. 66 но с промывками системы азотной пания фосфорных ресурсов и раили фосфорной кислотой, посте- стущего понимания, что настоящий

>> НАША ЗАДАЧА — ПОНЯТЬ, КАК ВНЕСЕНИЕ МИКРОБИОЛОГИЧЕСКИХ УДОБРЕНИЙ ВЛИЯЕТ НЕ ТОЛЬКО НА УРОЖАЙ, НО И НА САМУ ПОЧВЕННУЮ МИКРОБИОТУ, ЧТОБЫ ВИДЕТЬ ДОЛГОСРОЧНЫЕ **ПОСЛЕДСТВИЯ**

условиях проверяем, как они ра- подходит. Здесь альтернативой а способностью прокормить себя. ботают без влияния погоды, влаж- могут стать микробиологические ности и других полевых факторов. препараты — не просто как источ- У России для обеспечения суверениник питания, а как инструмент тета есть все основания: огромные По прогнозам, рынок микробио- регулирования почвенного фона

рекомендаций по внесению таких не придавать значения». удобрений в промышленных садах. пенно подкисляет почву. Тради- суверенитет страны определяется

территории, плодородные земли. И микробиологические удобрения — хоть и малая, но важная часть рил в мультипликационном фильме универсальных «Вокруг света за 80 дней» персонаж

В связи с чем нужно проводить це- Даже при рекордных урожаях ленаправленные работы в области около 4 миллионов тонн — нам селекции и адаптации микроор- не хватает яблок: потребность стра-Кроме того, возникли серьезные ганизмов не только под культуру, ны составляет порядка 5 миллионов проблемы с кислотностью почв: но и под конкретный тип почвы. тонн. Так что впереди еще много внесение удобрений через систе- Это сложная задача, но она жизнен- работы с сортами, технологиями, Технологический прорыв в области Особое значение имеют достижеагробиотехнологий стал возможен благодаря ряду фундаментальных открытий. Системные изменения в методах исследований привели к появлению новых подходов в агросекторе. Внедрение цифровых технологий, развитие методов точного земледелия и применение искусственного интеллекта для анализа данных позволили создать принципиально новую модель сельскохозяйственного производства. Например,

МЕТОДЫ МОДИФИКАЦИИ

СЕМЯН СТИМУЛИРУЮТ РОСТ

>> В РАМКАХ ПРОЕКТА БЫЛИ ДОСТИГНУТЫ ЗНАЧИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ, КОТОРЫЕ, Я НАДЕЮСЬ, ВНЕСУТ СУЩЕСТВЕННЫЙ ВКЛАД В РАЗВИТИЕ ОТЕЧЕСТВЕННОГО АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА

> CRISPR-технологии дают возможность точечно модифицировать геном растений, создавая устойчивые сорта. Метагеномные исследования раскрывают потенциал почвенных микроорганизмов, искусственный интеллект интегрируется в системы управления агропроизводством.

ния в области нанотехнологий, позволяющие создавать целевые формы микроэлементов с повышенной доступностью для организма. При поддержке РНФ мы разрабатываем новые высокостабильные, биологически активные наноразмерные формы эссенциальных микроэлементов для биологической модификации пищевых и кормовых сельскохозяйственных культур и повышения их устойчивости к стрессовым условиям окружающей среды. Речь идет о важных минеральных веществах, таких как железо, цинк, йод и других, необходимых нашему организму для нормальной работы органов и поддержания здоровья.

В ходе проекта мы достигли значительных результатов, которые, я надеюсь, внесут существенный вклад в развитие отечественного агропромышленного комплекса. В частности, мы получили стабильные наночастицы микроэлементов и установили закономерности их взаимодействия с растительными тканями. Особое внимание уделялось определению оптимальных составов для различных культур, что имеет прямое отношение к задачам импортозамещения в агросекторе.

← содержание

Слева направо: кандидаты технических наук Андрей Блинов и Андрей Нагдалян за работой в лаборатории. Источник: СКФУ

Мы разработали методы модифи- микроэлементов, что делает их тивности применения наночастиц позволяет формировать новые подходы к повышению урожайности и качества сельскохозяйственной продукции.

Важно отметить, что предлагаемая нами методология обработки семян сельскохозяйственных культур гащаются полезными вещества- радигму о роли фундаментальной встраиваются ния. Впервые нам удалось добить- ского хозяйства. Рынок к этому

кации семян и исследовали влия- эффективными как для животных, ние наночастиц на рост и развитие так и для человека. Это особенно растений. База данных по эффек- важно для преодоления дефицита элементов в рационе населения.

> >> СЕЙЧАС ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ МОГУТ И ПО ВОЗМОЖНОСТИ ДОЛЖНЫ ПЕРЕХОДИТЬ **К ВНЕДРЕНИЮ В РЕАЛЬНЫЕ ТЕХНОЛОГИИ** МАКСИМАЛЬНО БЫСТРО

демонстрирует двойной эффект Уже в процессе работы над проеквоздействия на растения. С одной том мы выстроили диалог с сельстороны, улучшаются адаптацион- скохозяйственными предприятиные способности растений к раз- ями Ставропольского края и друличным стрессовым факторам, гих регионов, чтобы обсудить а также стимулируются их рост внедрение наших исследований. и развитие. С другой – они обо- Современные реалии меняют пами: наночастицы микроэлементов науки: сегодня прикладные исв биологические следования могут и должны перепроцессы растений, формируя ме- ходить к внедрению в реальные таллопротеины, ферменты, фито- технологии максимально быстро. гормоны и другие важные соедине- По крайней мере в области селься создания биодоступной формы готов. Кроме того, в ходе проекта

в университете была создана новая жая, автоматизируют процессы

Будущее агробиотехнологий напря- виваться системы компьютерного мую связано с развитием иннова- зрения для мониторинга состояния ций. Большое внимание будет уде- растений, технологии создания ляться созданию новых форм функ- цифровых двойников полей, мациональных продуктов питания, шинное обучение для прогнозиразработке устойчивых к стрессам культур и внедрению экологически безопасных технологий. Стратегические приоритеты развития включают повышение эффективности сельскохозяйственного производства, обеспечение продовольственной безопасности и развитие экспортного потенциала. По словам министра сельского хозяйства Ок- сельхозтехника с ИИ-управлением, саны Николаевны Лут, внедрение интеллектуальные системы управсовременных технологий в агросек- ления агропроизводством. тор способствует созданию новых рабочих мест в сельской местности и повышению конкурентоспособности отечественного АПК.

В ближайшие годы агропромышленный комплекс России ожидает масштабная технологическая трансформация, во многом связанная с активным внедрением искусственного интеллекта и цифровых технологий. Согласно Национальной стратегии развития искусственного интеллекта до 2030 года, сельское хозяйство входит в число приоритетных отраслей для цифровизации.

Современные ИИ-технологии по- Экологический аспект внедрения зволяют создавать интеллектуаль- ИИ-технологий приобретает особую ные системы управления агропро- значимость в контексте устойчивого изводством, которые анализируют развития агросектора. Интеллектуогромные массивы данных и при- альные системы помогают оптиминимают оптимальные решения зировать использование ресурсов, в режиме реального времени. Уже минимизировать воздействие на окрусегодня внедренные технологии жающую среду и повышать эффекна основе искусственного интел- тивность производства. 66 лекта ускоряют выявление болезней растений, оптимизируют использование удобрений, повышают точность планирования уро-

лаборатория агробиотехнологии, а мониторинга состояния посевов, затем факультет сельского хозяй- а также совершенствуют работу сельскохозяйственной В ближайшие 5–10 лет будут раз-

> >> АГРОПРОМЫШЛЕННЫЙ КОМПЛЕКС РОССИИ ОЖИДАЕТ МАСШТАБНАЯ ТЕХНОЛОГИЧЕСКАЯ ТРАНСФОРМАЦИЯ, ВО МНОГОМ СВЯЗАННАЯ С АКТИВНЫМ ВНЕДРЕНИЕМ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА И ЦИФРОВЫХ ТЕХНОЛОГИЙ

рования урожайности, автономная

← содержание

пазвитие аквакультуры и птицеводства неразрывно связано с использованием новейших биотехнологий. Исследователи работают в разных направлениях, например создают пробиотические препараты на основе генетических данных

> и повышают эффективность кормов добавками из водорослей. Эксперты полагают, что в России эти отрасли сельского хозяйства следуют ключевым мировым трендам к объединению научных подходов, цифровой трансформации процессов и использованию искусственного интеллекта.

РУДОЙ

доктор технических наук, декан факультета «Агропромышленный» Донского государственного

В области агробиотехнологий и объектов аквакультуры, создаются за последние пять лет произошел биопрепараты для защиты от бактенаучно-технологический прорыв, рий и патогенных грибов, фаготеставший толчком для развития сферапевтические и иммунобиологические препараты для ветеринарии, прогресс достигнут в создании рас- что повышает устойчивость и экологичность сельхозпроизводства.

ры аквакультуры. Значительный тений-биофабрик — трансгенных растений, способных производить ценные белки-иммуномодуляторы для животных. Это открывает новые перспективы в животноводстве и кормопроизводстве. Активное внедрение управляемого светодиодного освещения в условиях вертикального фермерства (агробиофотоника) жаев в год и ускорять циклы раз-

Именно это и повлияло на вектор моих исследований. Мы стали создавать синбиотические препараты для аквакультуры на основе молекулярно-генетического подхода, то есть добавки, сочетающие полезные бактерии (пробиотики) и вещества, спопозволяет собирать несколько уро- собствующие их росту (пребиотики).

множения сельскохозяйственных культур. Совершенствуются методы генетической паспортизации и сертификации семян, животных Карточка проекта

За последние годы произошли зна- Методом РНК-анализа мы иден- Исследовательский коллектив. чимые изменения в области моле- тифицировали 12 новых штаммов кулярно-биологических методов и пробиотических бактерий, полученподходов в разработке пробиотиче- ных из естественных мест обитания водных организмов. Мы посмотре-Ключевым стал переход к пробио- ли, какие гены отвечают за синтез геномике — интеграции геномных полезных соединений, и отобрали технологий с разработкой пробио- штаммы и их комбинации для конкретных видов рыб разных возрас-

ских препаратов для аквакультуры.

тиков. Внедрение новых методов

чать данные о сообществе микро-

микробиоме — в короткие сроки,

вплоть до наблюдений в режиме

реального времени непосредствен-

но на рыбоводческих хозяйствах.

При помощи комплексного подхо-

да мы установили, что эффектив-

ность пробиотиков достигается

кробными консорциумами. Раз-

мов позволило конструировать

мультиштаммовые композиции с

ми. Именно этим мы занимаемся

Фондом.

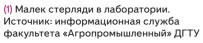
прочтения генов позволило полу- тов и типов питания.

Источник: информационная служба факультета «Агропромышленный» ДГТУ

МИРОВЫМ ТРЕНДАМ К ИНТЕГРАЦИИ НАУЧНЫХ МЕТОДОВ, ИНФОРМАТИЗАЦИИ ПРОЦЕССОВ И ПРИМЕНЕНИЮ

Затем наш коллектив разработал методики совместного культивине отдельными штаммами, а мирования пробиотических бактерий витие геномики отдельных штам- и технологии сушки препаратов. Тестируемые штаммы проверили в условиях, приближенных к реальному производству, и получили уникальдополняющими друг друга генаные данные. Они говорят о сущев нашем проекте, поддержанном ственном экономическом эффекте биопрепаратов при их интеграции в производство: растут выживаемость и скорость роста рыб, сокращается расход кормов.

организмов в кишечнике рыб — >> наша отрасль следует ключевым ИСКУССТВЕННОГО ИНТЕЛЛЕКТА


Мы разместили геномы бактерий, и иммуномодулирующего дейперспективные для сельского хо- ствия добавки. Чтобы исследовать зяйства, в международных базах антиоксидантные свойства пробиоданных генетической информа- тиков, мы разработали модель, выции: 11 пробиотических штам- зывающую состояние повышенного мов Bacillus velezensis и 2 штамма Bacillus subtilis, выделенных из донных отложений реки Дон.

Мы всесторонне посмотрели, как пробиотики действуют на животжде всего нам был интересен кон- микробиоты рыб. противовоспалительного

окисления клеток у рыбок *Danio* rerio. Бактериальный биосенсор показал нужный эффект в различных тканях. Затем эти данные подтвердились на форели и стерляди.

ных. Методами РНК-секвениро- Наконец, методом метагеномнования описали изменения в актив- го анализа кишечной микробиоты ности 244 генов в печени, мозге мальков и молоди стерляди поди жабрах стерляди, получавшей тверждено влияние пробиотичепробиотические препараты. Пре- ских препаратов на формирование

(2) Стерлядь в лаборатории. Источник: информационная служба факультета «Агропромышленный» ДГТУ к персонализированной лярной аквакультуре. Во-первых, развиваются системы мониторинга микробиома в реальном времени. криптомных данных — информации обо всех РНК-молекулах клетки, показывающих активность генов в определенный момент времени.

Сегодня наша отрасль движется Во-вторых, в ближайшие 5-10 лет молеку- ожидается полная автоматизация селекции штаммов через интегрированные in silico-in vitro-in vivo платформы. Разработка пробиотиков для Они позволяют менять пробиоти- аквакультуры уже сочетает вычисческие программы на основе транс- лительный анализ, лабораторные исследования и испытания на животных как в лабораторных, так и в промышленных условиях. Отрасль следует ключевым мировым трендам к объединению научных

Исследование влияния разработанных добавок на рыбу. Источник: информационная служба факультета «Агропромышленный» ДГТУ

методов, информатизации процес- Основной индустриальный партнер сов и применению искусственного нашего проекта — полносистемное интеллекта. Все это ускоряет раз- рыбоводное предприятие ООО «Приработку и внедрение пробиотиков бой», которое заинтересовано в интедля аквакультуры и скоро позволит грации передовых научных решений создать полностью интегрирован- в практику реального производства. ные решения.

В-третьих, прогнозируется переход к микробным консорциумам, разработанным под конкретные виды рыб и условия их выращивания. Кроме того, предстоит создание рационально спроектированных На протяжении всей работы мы ощусинбиотиков с пребиотическими добавками, выбранными и синтези- ренность в успехе наших исследоруемыми на основе детального изу- ваний, что служит важным стимучения генов нужных штаммов бак- лом для научной группы. Мы терий. К 2030 году ожидается воз- убеждены, что совместными усилиникновение полностью автономных ями сможем вывести отечественсистем аквакультуры с непрерыв- ную аквакультуру на новый уровень ным молекулярно-биологическим мониторингом и использование предсказательного транскриптомного моделирования для адаптивной коррекции пробиотической и синбиотической терапии.

>> СОВМЕСТНО С ИНДУСТРИАЛЬНЫМИ ПАРТНЕРАМИ МЫ СМОЖЕМ ВЫВЕСТИ ОТЕЧЕСТВЕННУЮ АКВАКУЛЬТУРУ НА НОВЫЙ УРОВЕНЬ РАЗВИТИЯ

щаем искреннюю поддержку и уверазвития. 🎸

ИСПОЛЬЗОВАНИЕ ВОДОРОСЛЕЙ В КАЧЕСТВЕ ДОБАВОК ПОЗВОЛЯЕТ РЕАЛИЗОВАТЬ ГЕНЕТИЧЕСКИЙ ПОТЕНЦИАЛ ПТИЦЫ БЕЗ

УВЕЛИЧЕНИЯ ОБЪЕМА КОРМА

ЛАРИСА **КАРПЕНКО**

профессор, заведующий кафедрой биохимии и физиологии Санкт-Петербургского государственного университета

Эффективность любой отрасли жи- Органические формы минералов, кормопроизводства, обеспечивающего отрасль кормами, которые полностью отвечают потребностям животных, а также увеличивают темпы сельхозпроизводства. Водные ресурсы — незаменимый источник различных биологически активных веществ. К ним относятся водоросли и сапропель — донные отложения пресноводных водоемов, ценные источники биологически активных веществ, минералов, витаминов и белков, необходимых для полноценного питания птицы.

вотноводства, в частности птицевод- содержащихся в этих ресурсах, обства, требует стабильного развития ладают высокой биодоступностью: они лучше усваиваются организмом, не образуют нерастворимых комплексов в ЖКТ и защищены от взаимодействия с антинутриентами*, например фитатами. Это позволяет снижать дозировки добавок в рационе, уменьшать затраты и повышать продуктивность животных.

> Особое внимание уделяется таким водорослям, как хлорелла и бурые фукусовые (Ascophyllum nodosum, Fucus vesiculosus). Хлорелла богата белком, аминокислотами, витаминами и ненасыщенными жирными кислотами. Ее применение в виде суспензии улучшает пищеварение, укрепляет иммунитет, повышает яйценоскость и качество яиц за счет увеличения содержания каротиноидов. Бурые водоросли в экологически чистых зонах, например в Соловецком архипелаге, быстро восстанавливаются в приливно-отливной зоне и содержат йод, антиоксиданты, клетчатку и полисахариды. Их использование не только улучшает здоровье птицы и качество продукции, но и снижает выбросы метана у жвачных, что важно для борьбы с изменением климата.

Карточка проекта

Куры-несушки. Источник: авторы исследования

Слева направо: доцент Алеся Бахта, доцент Полина Полистовская заведующий кафедрой Лариса Карпенко и аспирант Илья Махнин Источник: авторы

>> исследования на птицах подтвердили, ЧТО НАШИ ДОБАВКИ БЕЗОПАСНЫ, УЛУЧШАЮТ УСВОЕНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ, НОРМАЛИЗУЮТ МИКРОБИОМ, УСИЛИВАЮТ ИММУНИТЕТ И ПОМОГАЮТ В ПРИРОСТЕ МЫШЕЧНОЙ МАССЫ животных

> В последние десятилетия в российском птицеводстве произошли системные изменения. Созданы отечественные кроссы, или гибриды, кур — «Смена-9», «Русь», «Сибиряк» и другие, по продуктивности не уступающие зарубежным аналогам. Разработаны стандарты кормления по обменной энергии и сырому протеину, внедрена си стема сухого кормления, созданы клеточные батареи, световые режимы на основе LED-освещения, методы принудительной линьки. Отказ от хлорной обработки тушек, разработка рецептур детского и ор- фенолы. Впервые определены их ганического питания, выпуск оте- компонентный состав, физико-хичественных вакцин, включая первую вакцину против болезни Ма- ственная конфигурация. В лаборарека, — все это стало возможным благодаря научным исследованиям.

науку о взаимодействии питания бактериальной.

что состав рациона влияет на экспрессию генов продуктивности и иммунитета, а также на микробиом кишечника. Например, дефицит незаменимых аминокислот усиливает воспалительные реакции в кишечнике. Это стимулирует поиск альтернатив антибиотикам — пробиотиков и фитобиотиков, в том числе на основе морских водорослей. Их компоненты обладают противомикробным, противовоспалительным, иммуномодулирующим и ростостимулирующим действием, позволяя получать экологически чистую продукцию.

При поддержке РНФ совместно с БФУ имени И. Канта мы выделили и изучили фракции из бурых водорослей Белого моря: полисахариды, липиды, белки и полимические свойства и пространторных условиях мы установили, что полифенольные фракции обладают выраженной антиоксидант-Современный подход к кормлению ной и фунгицидной активностью, опирается на нутригеномику — а большинство фракций — анти-Полисахариды и генов. Исследования показывают, из водоросли F. vesiculosus проявили

* Антинутриенты – вещества растительного происхождения, которые мешают усвоению питательных веществ (минералов, витаминов, белков) в пищеварительной системе человека а также могут напрямую влиять на здоровье.

что добавки не токсичны, улучшают усвоение железа и белкотические ферменты и снижают щелочную фосфатазу за счет нормализации микробиома. Наибольший прирост мышечной массы

слабое противоопухолевое дей- у бройлеров дало применение поствие, вероятно, за счет фукоида- лисахаридов, липидов и белков. нов. Полисахариды и полифенолы Обе фракции усилили врожденный снижали провоспалительные цито- иммунитет: повысили фагоцитоз, бактерицидную и лизоцимную активность. Также отмечено уси-Исследования на цыплятах-брой- ление иммунного ответа на ваклерах и курах-несушках показали, цины против болезней Ньюкасла

вого азота, активируют гликоли- >> СЕГОДНЯ ПРОМЫШЛЕННОЕ ПТИЦЕВОДСТВО РАЗВИВАЕТСЯ ЗА СЧЕТ ТЕХНОЛОГИЧЕСКОГО оснащения, автоматизации, интеграции В АГРОХОЛДИНГИ И ФОКУСА НА КАЧЕСТВЕ И БЕЗОПАСНОСТИ ПРОДУКЦИИ

Водоросли Белого моря. Источник: авторы исследования

ализовать генетический потенциал нитета и повышения сохранности и продуктивности животных.

ство развивается за счет техноло- или страусиное птицеводство. гического оснащения, автоматиности продукции. В ближайшие (мониторинг состояния птицы, здесь центральное место. ИИ в управлении производством),

Таким образом, использование повышение заботы об окружафракций водорослей позволяет ре- ющей среде и развитие зеленых кормовых добавок, укрепление птицы без увеличения объема кор- мер биобезопасности. Кроме того, ма — за счет оптимизации обмен- ожидается усиление специализаных процессов, укрепления имму- ции на определенных видах птицы (куры, индейки, водоплавающие) и продуктах (мясо, яйца), а также развитие экзотических направ-Сегодня промышленное птицевод- лений, таких как перепелиное

зации, интеграции в агрохолдинги Ключевым направлением останети фокуса на качестве и безопас- ся поиск натуральных, эффективных и безопасных компонентов 5–10 лет ожидается дальнейшее кормов, а водные ресурсы, особенвнедрение цифровых технологий но морские водоросли, займут

животноводство

ффективность животноводства сегодня во многом опре-💙 деляется уровнем внедрения технологий. Так, машинное обучение и 3D-моделирование позволяют объективно оценивать состояние животных, не причиняя им вреда, а моле-

> кулярно-генетические методы ускоряют селекцию и открывают путь к формированию ценных признаков уже на ранних стадиях развития. При поддержке РНФ ученые разрабатывают системы точной оценки и повышения продуктивности крупного рогатого скота, а также современные методы селекции и репродуктивных технологий для развития отечественного коневодства.

АЛЕКСЕЙ

доцент, заведующий кафедрой компьютерной безопасности и прикладной алгебры математического факультета Челябинского государственного университета, старший научный сотрудник лаборатории прецизионных технологий в сельском хозяйстве Фелерального научного центра биологических систем и агротехнологий РАН

НАШИ ИССЛЕДОВАНИЯ НАЦЕЛЕНЫ НА УМЕНЬШЕНИЕ СТРЕССА ЖИВОТНЫХ, ВОЗНИКАЮЩЕГО ПРИ ТРАДИЦИОННЫХ МЕТОДАХ ОЦЕНКИ

Сегодня наука играет ключевую роль в повышении эффективности сельского хозяйства. Ученые применяют редактирование генов для улучшения свойств растений и животных, чтобы повысить их устойчивость к неблагоприятным условиям окрущества почвы и кишечника животных, что позволяет разрабатывать биопрепараты и корма, усиливаю- И это лишь часть примеров. щие иммунитет и ускоряющие рост.

Беспилотники и спутники позволяют оценивать состояние посевов, уровень влаги и питательных веществ, помогая применять удобрения и воду точечно и эффективно. Кроме того, в отрасли активно применяются большие данные и аналижающей среды и увеличить продук- тика для точного прогнозирования тивность. Изучают микробные сооб- урожая, рисков болезней и вредителей, что минимизирует потери и снижает потребность в химикатах.

Особую роль стали играть методы современным технологиям, таким машинного обучения, которые ис- как ДНК-микрочипы высокой плотпользуются для анализа огромных ности, исследователи могут провемассивов данных, полученных в ре- рить сотни тысяч и даже миллионы зультате полногеномного SNP-гено- SNP сразу, охватывая весь геном типирования. SNP (Single Nucleotide организма. Polymorphism) означает однонуклеоучастке генома. Такие изменения гие признаки животных.

>> МЫ МОЖЕМ ОПРЕДЕЛЯТЬ УПИТАННОСТЬ И ВНЕШНИЕ ХАРАКТЕРИСТИКИ животного по зр-моделям. ЧТО УСКОРЯЕТ ПРОЦЕСС БЕСКОНТАКТНОЙ **ОЦЕНКИ ЖИВОТНЫХ**

SNP в геноме животного. Благодаря для конкретных целей.

тидный полиморфизм — различия в В свою очередь, современные вынуклеотидах, элементах ДНК, меж- числительные методы позволяют ду отдельными особями. Обычно искать закономерности и ассоциаразница проявляется заменой одного ции между SNP и интересующими нуклеотида другим в определенном признаками, такими как продуктивность, устойчивость к болезням, могут влиять на внешний вид, здоро- плодовитость и многое другое. Исвье, продуктивность и многие дру- пользуя SNP-данные и модели машинного обучения, можно заранее предсказывать будущие характеристики животного еще до того, как оно достигнет зрелости, или находить связи между определенными SNP и конкретными признаками, например какой участок генома влияет на производительность молока. Также модели машинного Суть полногеномного SNP-геноти- обучения способны автоматически пирования сводится к процедуре, выделять сходства и различия межв ходе которой ученые определя- ду разными группами животных, ют последовательность множества облегчая сортировку и отбор особей

В последние годы произошли су- логии стали незаменимым инструщественные изменения и открытия, ментом для автоматической оценки которые оказали сильное влияние характеристик животных и прона нашу область исследований, гнозирования их продуктивности. связанную с разработкой новых под- Например, мы можем определять ходов к прижизненной оценке круп- упитанность и внешние характеного рогатого скота путем 3D-визу- ристики животного по 3D-модеализации хозяйственно-биологиче- лям, что уменьшает зависимость ских и генетических особенностей от субъективных мнений и ускоряживотных.

Прогресс в развитии алгоритмов

ет процесс бесконтактной оценки животных.

машинного обучения, особенно глу- Появились более доступные и выбоких нейронных сетей, позволил сокоточные датчики и камеры, значительно улучшить точность и на- способные собирать высококачедежность методов анализа изображе- ственные 3D-данные о животном. ний и 3D-визуализации. Эти техно- Использование лазерных сканеров

Фракции крови коров в пробирках из центрифуги. Источник: Алексей Ручай

лять расстояние от сенсора до объектов, добавляя третье измерение к каждому кадру, стало обычным делом в нашей работе. Эти и другие устройства обеспечивают надежные результаты даже в условиях нестабильного освещения и быстрых движений животных.

и RGB-D камер, способных опреде- Многие фермерские хозяйства начинают активно использовать цифровые устройства и программное обеспечение для мониторинга состояния животных. Это создает предпосылки для широкого внедрения наших методов и техник оценки животных в реальной практике, что в конечном счете повысит рентабельность и эффективность животноводства.

Кроме того, разработаны стандартные протоколы для анализа 3D-данных и формирования общих библиотек, содержащих информацию о животных. Такие библиотеки упрощают сравнительный анализ и способствуют обмену информацией между лабораториями и центрами по всему миру.

и экологической ответственности при традиционных методах оценки. ной деятельности.

>> PACTET OCO3HAHUE BAЖHОСТИ ГУМАННОГО ОБРАЩЕНИЯ С ЖИВОТНЫМИ И ЭКОЛОГИЧЕСКОЙ ОТВЕТСТВЕННОСТИ В СЕЛЬСКОМ ХОЗЯЙСТВЕ

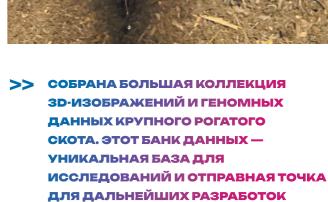
Важно и то, что генетика и 3D-визуализация все чаще интегрируют-Растет осознание важности гу- ся в учебные курсы университетов манного обращения с животными и колледжей, которые готовят ветеринаров, зоотехников и агрономов. в животноводстве. Наши исследо- Молодые специалисты получают вания нацелены на обеспечение необходимую подготовку для пониблагополучия животных, уменьше- мания и использования новейших ние стресса и боли, возникающих технологий в своей профессиональ-

Рамка для съемки 3D-модели животного. Источник: Алексей Ручай

РНФ, мы стремимся создать эф- пилотные испытания в реальных хофективный и точный метод оценки зяйствах для подтверждения практиживотных с использованием техно- ческой пользы наших решений. логий 3D-визуализации и геномного анализа. Наша задача — объединить Наша группа собрала большую традиционные подходы, такие как коллекцию 3D-изображений и геморфометрия, фенотипирование номных данных крупного рогатого и генотипирование, с новыми воз- скота. Этот банк данных стал униможностями, предоставляемыми со- кальной базой для последующих временной техникой и математиче- исследований и отправной точкой скими моделями. Важно убедиться, для дальнейших разработок. Чечто созданные технологии подходят рез полногеномные ассоциативные для реального использования на фер- исследования (GWAS) мы выяви-

В рамках проекта, поддержанного дустрии. Для этого запланированы

мах и соответствуют стандартам ин- ли ряд генетических вариантов,


которые сильно влияют на продуктивность животных. Эти данные будут полезны при селекции и выборе лучших особей для размножения.

Мы ведем разработку рабочего прототипа программы, которая автоматически оценивает упитанность и продуктивность животных по 3D-изображениям и геномным данным. Программа должна пройти начальные стадии тестирования. Сейчас мы ведем переговоры с крупными игроками рынка животноводства о формах сотрудничества.

Несмотря на имеющийся задел, впереди много работы. Нужно завершить проверку точности методов в реальных условиях, начать активное продвижение технологии. Продолжается работа по увеличению объема базы данных и углубленному исследованию найденных генетических маркеров. Мы уверены, что технология станет востребованной и популярной среди профессионалов отрасли.

Алгоритмы машинного обучения прочно вошли в нашу жизнь. Мы ожидаем, что их использование станет повсеместным. Это увеличит точность оценки животных, улучшит селекционные процессы и снизит риски потерь вследствие ошибок в отборе животных.

зации и анализа, что сделает наше и дискомфорт животных. исследование частью стандартной практики.

Современные тенденции указывают Этические нормы и требования на то, что датчики, роботы и умные охраны окружающей среды повысистемы управления фермами ста- шают важность гуманных методов нут нормой в сельском хозяйстве. оценки и заботы о животных. В бу- основанные на наших и других по-Животных будут регулярно про- дущем появятся более чувствиверять системы видеонаблюдения, тельные и информативные методы оснащенные функцией 3D-визуали- оценки, минимизирующие стресс

Также следует ожидать, что в ближайшее время появятся готовые решения для коммерческих хозяйств, добных исследованиях. Это откроет широкие возможности для бизнеса и создаст спрос на профессиональные кадры и компетенции. 66

89

← содержание

90

ЛЮДМИЛА

наук, заведующий лабораторией физиологии Всероссийского научноисследовательского института коневодства имени академика В. В. Калашникова

COBPEMENHUE МЕТОДЫ СЕЛЕКЦИИ позволяют быстро И ЭФФЕКТИВНО ПОЛУЧАТЬ ЭМБРИОНЫ ОТ ЦЕННЫХ животных с нужными КАЧЕСТВАМИ

Мы — единственный отраслевой не полный перечень достоинств. Поинститут в стране, который зани- мимо продуктивного направления, мается исключительно вопросами связанного с производством мяса, развития отечественного коневод- молока или кумыса, основным сества. Специалисты ведут учет всех лекционируемым признаком остаетроссийских племенных лошадей ся работоспособность, что отличает по 17 заводским породам, проводят их оценку, генетическую идентифи- зяйственных животных. Достаточкацию и контроль происхождения, готовят и выпускают государственные племенные книги и паспорта, занимаются продуктивным и массо- танционные пробеги, испытания вым коневодством, а также выполня- тяжеловозов, досуговые верховые ют научные исследования в области прогулки, конные шоу. Все это сугенетики, селекции, физиологии размножения, криобиологии, кумысоделия и даже цифровизации в селекционном процессе. В институте Селекционное существует ценнейшая библиотека с раритетами XVIII века и трудами отечественных ученых-иппологов. К ется 95 лет.

лошадей от других видов сельскохоно вспомнить классические виды конного спорта, гладкие скачки, рысистые бега, драйвинг, поло, дисщественно обогащает и украшает жизнь человека.

совершенствование в животноводстве подразумевает повышение продуктивности и качества сельскохозяйственных мер. Среди них — традиционные методы селекции, то есть отбор носливостью, красотой, грацией ве зоотехнического учета. Кроме и высоким интеллектом. Это далеко того, в животноводстве появляются

Людмила Лебедева проводит процедуру ИКСИ. Источник: Людмила Лебедева

рые позволяют вести отбор высокоценных сельскохозяйственных животных еще на стадии половых клеток и эмбрионов, в разы ускоряя селекционный прогресс. Реальностью становится направленная модификация, то есть редактирование генома для получения животных с заданными хозяйственно полезными признаками.

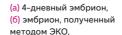
>> основным селекционируемым признаком ОСТАЕТСЯ РАБОТОСПОСОБНОСТЬ ЛОШАДЕЙ. ЧТО ОТЛИЧАЕТ ИХ ОТ ДРУГИХ ВИДОВ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Все эти методы неразрывно святехнологиями, такими как кусственное осеменение (ИO), больших массивов данных. Они метами коров и свиней.

новейшие клеточные и молекуляр- позволяют прогнозировать селекно-генетические технологии, кото- ционные признаки у потомков на основе направленного подбора родительских пар.

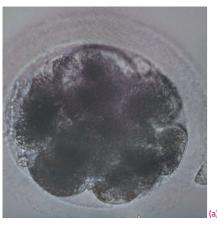
> Сегодня можно в кратчайшие сроки произвести эмбрионы от ценных животных с нужными качествами, причем в гораздо большем количестве, чем естественным путем, выявить наследственные заболевания и определить пол на начальных стадиях эмбрионального развития, получить потомство от бесплодных или умерших особей через клонирование, а также внедрить в геном определенные гены, кодирующие те или иные хозяйственно полезные признаки.

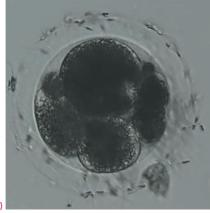
заны с репродуктивными био- В 2023 году мы выиграли грант ис- РНФ под руководством академика Валерия Калашникова. Благодатрансплантация эмбрионов (ТЭ), ря поддержке мы смогли создать экстракорпоральное оплодотво- и запустить новую ИКСИ-лаборарение (ЭКО), в том числе ИКСИ торию, начав работать с новейши-(интрацитоплазматическая инъек- ми репродуктивными технологияция сперматозоида в яйцеклетку), ми на собственном оборудовании. клонирование, предимплантаци- Санкции не позволили обучить онная генетическая диагностика сотрудников за рубежом, при-(ПГД), посредством которых по- шлось осваивать методики самим лучают живых особей. В этом же и учиться у коллег-медиков и реряду стоят цифровизация и анализ продуктологов, работающих с га-

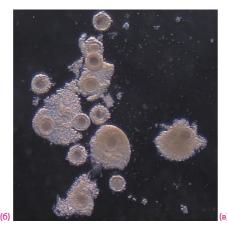

слову, в этом году ВНИИКу исполня- животных с помощью комплекса Главный объект наших исследова- особей по селекционируемым приний — это лошадь, удивительное знакам, подбор пар, чистопородное во всех отношениях животное, об- разведение по линиям и маточным ладающее силой, резвостью, вы- семействам, скрещивание на осно-

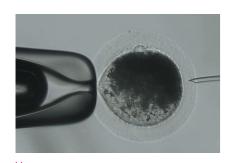
← содержание

Карточка проекта

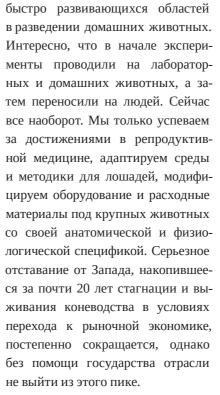

составляющей был сделан упор на всестороннее исследование ФЖ. Мы изучили ее биохимический, Еще один сложнейший аспект свягормональный, антиоксидантный зан с подготовкой сперматозоидов состав, воспалительные и апоп- к оплодотворению in vitro. Проблетотические факторы на разных ма в том, что все предшествующие


Из-за проблемы поставки импорт- стадиях созревания фолликулов. ных сред и расходных материалов Благодаря этой работе мы получивозникла необходимость перейти ли очень интересные результаты на собственные среды и матери- и сегодня ставим опыты по созреалы. Выбор пал на фолликуляр- ванию ооцитов в средах собственную жидкость (ФЖ) кобыл. Это ного приготовления, в том числе полезный ресурс и источник ин- с фолликулярной жидкостью. Такформации о внутренних процессах же начаты эксперименты по крисозревания ооцитов и оплодотво- оконсервации ооцитов. Это трудрения, вполне доступный для изу- ная задача, особенно при работе чения. Поэтому в качестве научной с лошадьми, до конца не решенная даже за рубежом.

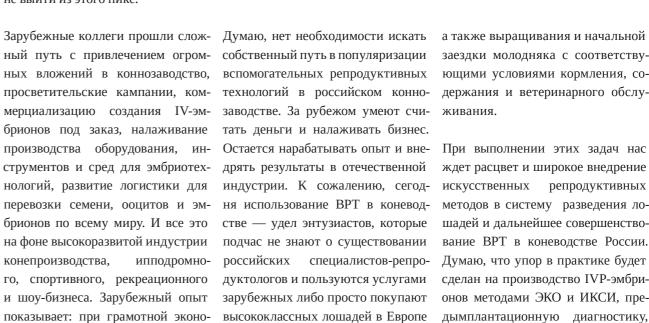



(в) незрелые ооциты, (г) процесс ИКСИ.

Источник: Людмила Лебедева


разработки и современные иссле- максимально тщательного подхода, спермиев. Пришлось начинать ра- ния животных. боту с нуля, в том числе в части использования свежего и заморожен- Главный итог нашей работы — это ного семени. Сейчас мы готовим высокая приживаемость эмбриона, заявку на изобретение по техно- полученного методом ЭКО с ислогии обработки спермы для ЭКО пользованием собственных нарабои ИКСИ.

Третий аспект работы связан с трансплантацией полученных


дования нашей лаборатории, в ко- в том числе в части подготовки которых значатся и мировые приори- был-реципиентов. Мы разработали теты, были направлены на замедле- усовершенствованную схему комние жизнедеятельности спермиев плексной гормональной обработки для удлинения срока хранения ма- кобыл перед пересадкой IVP-эмтериала. А для целей ИКСИ и ЭКО, брионов. Сейчас мы также готовимнаоборот, нужна гиперактивация ся к освоению метода клонирова-

> ток. Надеемся на ее благополучный исход и ждем появления на свет ценного жеребенка.

in vitro эмбрионов (IVP). Это особен- Вспомогательные репродуктивные но ценный материал, требующий технологии (ВРТ) — одна из самых

производства оборудования, иннологий, развитие логистики для перевозки семени, ооцитов и эмбрионов по всему миру. И все это на фоне высокоразвитой индустрии конепроизводства, ипподромного, спортивного, рекреационного показывает: при грамотной экономической политике отрасль способ- и Америке, фактически инвестируя на приносить существенный доход государству. Ежегодный вклад пле- ные экономики. менного, ипподромного и спортивного коннозаводства в экономику Европы измеряется миллиардами

Необходимо прежде всего выйти на уровень эффективности зарубежных репродуктивных центров и создать систему полного цикла выращивания высококлассных лошадей с кластерами кобыл — доноров ооцитов и эмбрионов, поголовья реципиентов, в том числе напрокат,

значительные средства в иностран-


заездки молодняка с соответствующими условиями кормления, содержания и ветеринарного обслу-

При выполнении этих задач нас ждет расцвет и широкое внедрение искусственных репродуктивных методов в систему разведения лошадей и дальнейшее совершенствование ВРТ в коневодстве России. Думаю, что упор в практике будет сделан на производство IVP-эмбрионов методами ЭКО и ИКСИ, предымплантационную диагностику, определение пола будущего жеребенка и, возможно, клонирование. Будут поддержаны проекты создания биоколлекций с генетическим материалом выдающихся лошадей. Вероятно, исследования будут развиваться в направлении терапевтического клонирования и геномного редактирования. 66

← содержание

... // ФОТОРЕПОРТАЖ

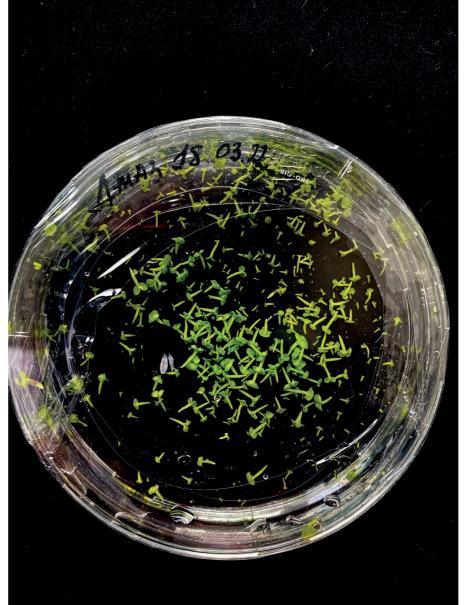
ФОТОИСТОРИИ ИЗ НАУЧНЫХ ЛАБОРАТОРИЙ ГРАНТОПОЛУЧАТЕЛЕЙ ФОНДА

2025 ГОД
//
ИЮЛЬ-АВГУСТ-СЕНТЯБРЬ
/
РАЗДЕЛ #6
ФОТОРЕПОРТАЖ > РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ
УНИВЕРСИТЕТ — МСХА ИМЕНИ К. А. ТИМИРЯЗЕВА

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ — МСХА ИМЕНИ К. А. ТИМИРЯЗЕВА

Фоторепортаж

КАФЕДРА МОЛЕКУЛЯРНОЙ СЕЛЕКЦИИ, КЛЕТОЧНЫХ ТЕХНОЛОГИЙ **И СЕМЕНОВОДСТВА**


о данным Росстата, в 2024 году посевные площади рапса увеличились на 30%. Такой рост подчеркивает актуальность задачи по изучению генетических основ устойчивости растений к заболеваниям и созданию гибридов. На кафедре молекулярной селекции, клеточных технологий и семеноводства Тимирязевской академии ученые работают над новым поколением озимого рапса, не подверженного распространенным заболеваниям — фомозу, фузариозу и склеротиниозу.

Крестоцветные растения, в том числе рапс, отличаются способностью к отдаленной гибридизации: полезные признаки можно передавать между разными видами. В проекте, который поддержал РНФ, изучалась устойчивость к заболеваниям коллекции озимого рапса и других крестоцветных культур. Одним из таких заболеваний является склеротиниоз, или белая гниль, к которому озимый рапс особенно восприимчив.

Несмотря на успехи селекции, для аграриев остается серьезной проблемой низкая выживаемость озимого рапса в холодный период. Группа под руководством кандидата сельскохозяйственных наук, доцента Анастасии Вишняковой создала генетическую платформу для селекции озимого рапса, который не боится распространенных болезней. Вскоре растения будут испытаны на устойчивость к зимним условиям.

Один из этапов технологии производства удвоенных гаплоидов связан с формированием эмбриоидов — зародышей, которые получают из незрелой пыльцы. Их пересаживают на твердую питательную среду, где они развиваются в растения.

Среды перед использованием необходимо стерилизовать в автоклаве, чтобы избежать роста микроорганизмов. Емкости и среды нагревают паром под давлением при температурах выше $100\,^{\circ}\mathrm{C}$.

Питательная среда состоит из микрои макроэлементов, витаминов, сахарозы и агар-агара

|айджест#3 / 2025 / июль-сентябрь / Фото

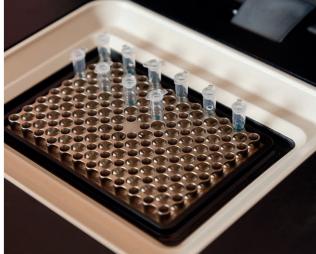
Часть растений в питательной среде формируется правильно — с листьями и корнями, другая — развивается с отклонениями и требует повторных пересадок и замены среды.

Аспирант Анастасия Александрова пересаживает слабые растения на новую питательную среду. Это дает им больше времени для укоренения и роста. В биотехнологии такие растения не выбраковывают: каждый удвоенный гаплоид — уникальный генотип, потенциальная селекционная линия.

Гаплоид — это растение с половинным набором хромосом, как у микроспор или яйцеклетки, тогда как у обычных растений набор двойной. Если набор удвоить, оба гена становятся одинаковыми, и получается чистая линия, которая стабильно передает признаки потомству и удобна для селекции.

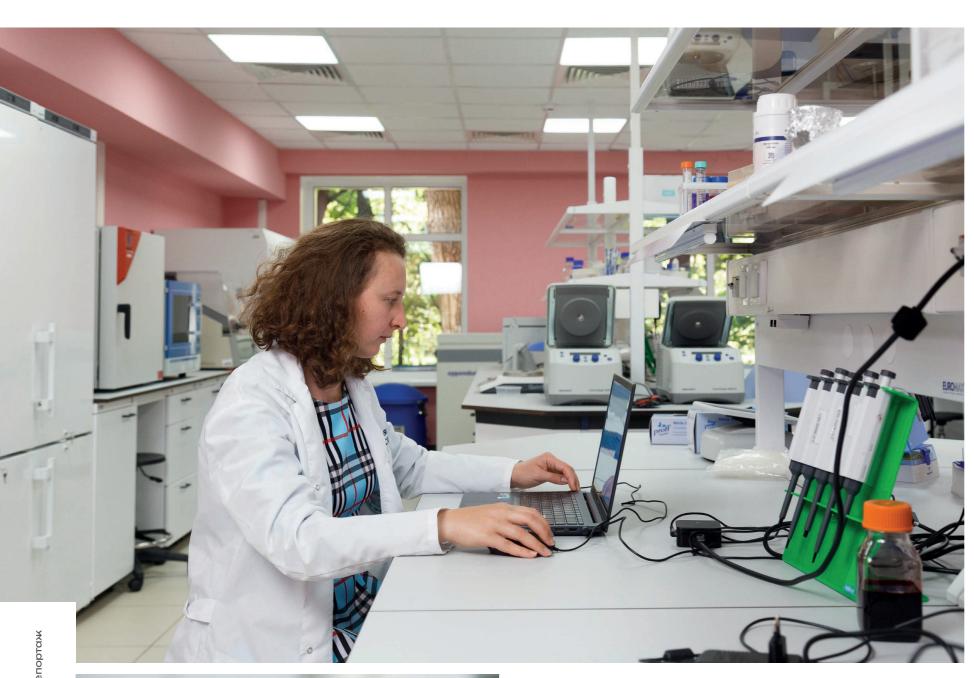
После выращивания в стерильных контейнерах с абсолютной влажностью растения пересаживают в почву и постепенно приучают к обычным условиям.

При пересадке влажность регулируют в пределах 70–80 %, чтобы растения не потеряли воду и не погибли. Постепенно влажность снижают до обычных показателей — около 30–40 %. За 3–7 дней растения учатся работать устьицами, переходят на фотосинтез и питание через корни, то есть начинают жить как обычные взрослые растения.



Ученые исследуют устойчивость рапса к разным штаммам патогенов. Одно и то же растение может быть толерантным к одному штамму, когда листья повреждаются, но все растение остается живым, и полностью погибать от другого.

Чтобы точно определить, какими генами устойчивости обладает растение, используют молекулярные маркеры. Они помогают выявить разные варианты одного и того же гена, аллели, и дают возможность понять, находится ли он в гомозиготном состоянии — одинаковый в обеих хромосомах или в гетерозиготном — разный. От этого может зависеть реакция растения на инфекцию.


Ученые, подбирая пары для скрещивания и контролируя результат с помощью молекулярных маркеров, могут объединить нужные аллели в одном генотипе. В итоге получается новый гибрид, способный противостоять сразу нескольким штаммам патогена.

← содержание

Результаты заражения высокоагрессивным штаммом фомоза.

Источник: Анастасия Вишнякова

(1, 2) Учеты поражения озимого рапса склеротиниозом.

Источник: Анастасия Вишнякова

После стадии адаптации растения размножают, чтобы получить семена, а затем испытывают на инфекционных фонах — проверяют устойчивость к разным болезням.

← содержание

Когда удается получить линии растений с нужной устойчивостью, начинается селекция. Прежде всего необходимо проверить, насколько хорошие гибриды они дают. Сначала отбраковывают слабые варианты — малорослые, с низкой урожайностью или малым количеством семян, а лучшие линии оставляют для дальнейшей работы.

За два года в рамках исследования созданоо более 500 удвоенных гаплоидов, которые затем передали селекционерам. Часть из них уже используется для скрещиваний и проходит испытания в поле, в том числе на зимостойкость.

АНАСТАСИЯ

вишнякова

Классическая селекция всегда будет основой: именно в полевых испытаниях проверяется жизнеспособность гибридов. Но за последние годы в арсенале селекционеров появились молекулярные и биотехнологические методы, которые позволяют нам работать точнее и быстрее. Если раньше на формирование линии уходило несколько лет, то сегодня мы можем получить ее за один сезон. Благодаря этому путь от исследований до выхода новых семян на рынок сокращается до 3-4 лет вместо привычных 10-15. Для такой культуры, как озимый рапс, это серьезный шаг вперед.

Карточка проекта

Для иллюстрации статей использованы фотографии пресс-службы РНФ, авторов исследований, пресс-служб институтов, пресс-службы Правительства РФ, Росконгресса, пресс-службы правительства Приморского края, пресс-службы правительства Нижегородской области, Координационного совета по делам молодежи в научной и образовательной сферах Совета при Президенте Российской Федерации по науке и образованию, Института виноградарства и виноделия «Магарач» НИЦ «Курчатовский институт», Университета науки и технологий МИСИС, Российского психологического общества, НАСА, а также изображения из открытых источников. Среди авторов: Диана Шарафулисламова и др.

Над номером работали: Анастасия Рогачева, Мария Михалева, Рейна Новикова, Станислав Любаускас, Юлия Красильникова, Юлия Шишкина