Новости

29 июня, 2023 11:19

Синтезированы «управляемые» химические соединения для электроники будущего

Источник: Naked Science
Российские ученые получили металлорганические соединения с переключаемыми магнитными свойствами. Входящие в их состав ионы металлов способны обратимо менять спиновое состояние в ответ на внешние воздействия, а следовательно, кодировать один бит информации в одной молекуле. Технология поможет в разработке устройств памяти с большей емкостью, а также еще на один шаг приблизит исследователей к созданию полноценного квантового компьютера из молекулярных материалов. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Molecules. 
Источник: Getty images
Существующие компьютерные процессоры практически достигли «потолка» своей производительности. Они работают с транзисторами — приборами для усиления и преобразования сигналов — минимально возможного размера. Поэтому, чтобы увеличить мощность процессоров будущего, специалисты обращаются к молекулярным материалам, которые могут находиться в одном из двух состояний, например, отличающихся числом неспаренных электронов у входящих в их состав атомов.

Эти состояния называют спиновым, и они чем-то похожи на двоичную систему кодирования информации при помощи «0» и «1». Опираясь на такую аналогию, ученые пришли к выводу, что за счет переключения между спиновыми состояниями при помощи некоторого внешнего воздействия можно в одной молекуле хранить один бит информации.

Однако для того, чтобы использовать переход между спиновыми состояниями, нужно научиться им управлять. В этом способны помочь комплексы металлов — соединения, в которых ионы металла помещены в «шубу», состоящую из органических молекул — лигандов. Воздействуя на органические лиганды, можно активировать «переключение» иона металла под влиянием внешних факторов (температуры, света и других), тем самым меняя и фиксируя его спиновое состояние.


Участник проекта, поддержанного грантом РНФ, научный сотрудник Игорь Никовский в процессе синтеза. Источник: Юлия Нелюбина

Ученые из Института элементоорганических соединений имени А. Н. Несмеянова (Москва) предложили новый способ соединения комплексов металлов в периодическую металлорганическую решетку, при котором отрыв электрона от иона металла происходит одновременно с отрывом протона от органического лиганда. Это позволило ученым впервые создать такую решетку, в которой роль «узлов» выполняют комплексы металлов, способные обратимо менять спиновое состояние под действием температуры.

Для этого авторы придумали новый синтетический подход по принципу «смешал и забыл» при использовании ионов серебра в качестве «клея», соединяющего «узлы» между собой. Спиновым переходом в таких металлорганических решетках в дальнейшем можно будет управлять, изменяя структуру молекулярных комплексов металлов и способ их соединения между собой.


Руководитель и участник проекта, поддержанного грантом РНФ, Юлия Нелюбина и Игорь Никовский в ходе обсуждения результатов эксперимента. Источник: Юлия Нелюбина

«Мы предложили новый принцип конструирования материалов с переключаемыми магнитными свойствами, которыми можно управлять. Подобные комплексы могут использоваться для хранения информации на носителях нового поколения. Потенциально каждая молекула такого соединения способна хранить один бит информации, что в перспективе может привести к появлению устройств хранения информации с практически неограниченной емкостью», — подытожила руководитель проекта, поддержанного грантом РНФ, Юлия Нелюбина, доктор химических наук, заведующий лабораторией «Центр исследования строения молекул» Института элементоорганических соединений имени А.Н. Несмеянова.  
Если вы хотите стать героем публикации и рассказать о своем исследовании, заполните форму на сайте РНФ
17 апреля, 2024
Создано биоразлагаемое защитное покрытие для титановых имплантатов
Российские ученые разработали биоразлагаемое полимерное покрытие для титановых имплантатов, которое ...
17 апреля, 2024
В СКФУ разработали новые вещества для лечения агрессивных форм рака
Получить более биодоступные и менее токсичные вещества с высокой противораковой активностью удалос...