Необходимость поддержания глюкозы внутри физиологического «коридора» прежде всего определяется потребностями головного мозга. Мозг является основным потребителем глюкозы: в состоянии натощак на его долю приходится 40–45% всей утилизируемой глюкозы. Падение глюкозы ниже нормального уровня — угрожающая для жизни ситуация, приводящая к нарушению мозговой деятельности. На снижение концентрации глюкозы в плазме крови ниже 3,5–3,9 ммоль\л на литр организм реагирует выделением стрессовых гормонов, таких как адреналин и норадреналин. Поэтому первые проявления гипогликемии: дрожь в теле, потливость, сердцебиение, резкая слабость, чувство голода, тревоги и страха — обусловлены действием этих гормонов. Если уровень глюкозы под влиянием гормонов не восстанавливается, возникают симптомы нейрогликопении (энергетического голодания мозга): заторможенность, дезориентация, неадекватное поведение, судороги и потеря сознания.
На протяжении всей столетней истории инсулинотерапии усилия ученых были направлены на то, чтобы сделать препараты инсулина более безопасными. В 80-х годах прошлого века появились генно-инженерные инсулины человека, а затем аналоги инсулина, профиль действия которых максимально приближен к физиологическому. Однако гипогликемия и по сей день остается одним из главных барьеров для достижения хорошего контроля диабета. Повторные гипогликемии повышают риск сердечно-сосудистых осложнений, приводят к снижению когнитивных функций мозга. Люди, перенесшие несколько эпизодов гипогликемии, теряют способность распознавать снижение уровня глюкозы в крови.
Молекулярные механизмы повреждающего действия гипогликемии активно изучаются. Ученые из Новосибирского академгородка подошли к решению этой проблемы с помощью биоинформатики и искусственного интеллекта. Реализация проекта, поддержанного грантом Российского научного фонда (20-15-00057), осуществляется научным коллективом, включающим эндокринологов, биоинформатиков и математиков из Федерального исследовательского центра Институт цитологии и генетики (ИЦиГ) СО РАН и Института математики им. С. Л. Соболева СО РАН (руководитель проекта — д.м.н., профессор РАН В. В. Климонтов).
Одно из направлений исследований — изучение повреждающих эффектов гипогликемии с помощью построения и анализа генных сетей. Генная сеть — это группа координированно функционирующих генов, обеспечивающих тот или иной биохимический процесс или фенотипический признак организма. Для построения генных сетей исследователями применена компьютерная система ANDSystem, разработанная в ИЦиГ СО РАН (д.б.н. В. А. Иванисенко). Система осуществляет интеллектуальный анализ текстов (текст-майнинг) научных публикаций, проиндексированных в базе данных Medline, с последующим структурированным представлением информации в виде графов молекулярно-генетических сетей. База данных системы содержит более 40 млн фактов, извлеченных из 28 млн рефератов Medline, которые описывают генетическую регуляцию, белок-белковые взаимодействия, каталитические реакции, транспортные пути, ассоциации генов, белков, метаболитов с заболеваниями, фенотипами и биологическими процессами. С помощью ANDSystem была построена генная сеть гипогликемии (к.б.н. О.В. Сайк). Реконструированная сеть включает 141 ген и 2467 взаимодействий. Гены данной сети вовлечены в регуляцию секреции инсулина, гомеостаз глюкозы, регуляцию запрограммированной гибели клеток, передачу внутриклеточных сигналов и другие процессы.
Гены, связанные с гипогликемией, чрезмерно представлены в генных сетях осложнений сахарного диабета: ретинопатии, нефропатии, нейропатии и макроангиопатии, а также когнитивной дисфункции и болезни Альцгеймера. При этом 14 генов были общими для всех исследованных нарушений, 11 биологических процессов были чрезмерно представлены во всех реконструированных сетях. Полученные результаты расширяют наши представления о молекулярных механизмах, лежащих в основе неблагоприятных эффектов гипогликемии на органы—мишени диабета: сетчатку глаза, почки, сердечно-сосудистую и нервную систему. Они также подтверждают роль нарушений обмена глюкозы в снижении интеллектуальных функций и развитии болезни Альцгеймера.
Прогнозирование и профилактика гипогликемии — одна из важнейших задач для диабетологов. Особой проблемой является гипогликемия во время сна. Здоровые люди обычно реагируют на ночную гипогликемию пробуждением, однако у людей с сахарным диабетом 1 типа, получающих инсулин, эта способность снижается. Поэтому почти половина всех случаев тяжелой гипогликемии развивается во время ночного сна. Эпизоды ночной гипогликемии могут проявляться кошмарными сновидениями, разбитостью и головной болью по утрам, хронической усталостью. В редких случаях ночная гипогликемия провоцирует фатальное нарушение ритма сердца (синдром «смерти в постели»).
Долгое время для прогнозирования ночной гипогликемии применяли измерение сахара крови перед сном. Однако из-за того, что динамика уровня глюкозы в течение ночи может быть различной, ценность этого метода ограничена.
Появление технологий непрерывного мониторинга глюкозы стало большим прорывом в диагностике ночной гипогликемии. При непрерывном мониторинге в подкожную клетчатку пациента устанавливается сенсор, который определяет уровень глюкозы в межклеточной (интерстициальной) жидкости каждые пять минут. Таким образом, за сутки проводится до 360 измерений уровня глюкозы. Внедрение технологий непрерывного мониторинга в клиническую практику показало, что ночная гипогликемия — гораздо более распространенное явление, чем считалось ранее.
Используя данные непрерывного мониторинга глюкозы и кластерный анализ, новосибирские ученые выделили паттерны ночной динамики гликемии, ассоциированные и не ассоциированные со снижением уровня глюкозы ниже нормального уровня (3,9 ммоль/л).
Девять паттернов включали эпизоды ночной гипогликемии. В редких ситуациях гипогликемия развивалась вскоре после отхода ко сну. В большинстве случаев гипогликемия наблюдалась в 2–4 часа ночи. При этом уровень глюкозы после полуночи был нормальным, однако наблюдался тренд на понижение. Если уровень глюкозы в начале ночи был повышенным и наблюдался нисходящий тренд, гипогликемия развивалась ближе к утру, в 4–6 часов утра.
Разнообразная динамика уровня глюкозы у разных пациентов в ночные часы наглядно показывает сложность прогнозирования гипогликемии.
На следующем этапе возникла идея использовать данные непрерывного мониторинга уровня глюкозы и алгоритмы машинного обучения для прогнозирования ночной гипогликемии. Эти алгоритмы оперируют большими массивами накопленных данных (в нашем случае — результатами мониторинга глюкозы), выявляют в них закономерности и на их основе строят прогноз будущего события (в нашем случае — гипогликемии). Важным преимуществом при этом является персонификация: прогноз строится по данным конкретного человека.
Машинное обучение принадлежит к области искусственного интеллекта. Термин «искусственный интеллект» употребляется для того, чтобы выразить способность различных устройств выполнять когнитивные функции человека, такие как обучение, рассуждение, прогнозирование, решение интеллектуальных задач. Искусственный интеллект и системы, на нем основанные, являются одним из важнейших научных достижений современной эпохи. Даже в повседневной жизни человек сталкивается с множеством вещей, так или иначе связанных с искусственным интеллектом: голосовой помощник в мобильном устройстве, автомобильные навигаторы, умные часы, компьютерные шахматы и т. д. Не менее широко искусственный интеллект применяется в специализированных областях деятельности: управление автомобилем, распознавание объектов на фотоснимках, принятие решений в биржевой торговле... Список применений искусственного интеллекта очень широк и постоянно пополняется новыми областями.
Исторически возникновение искусственного интеллекта связано с появлением электронно-механических устройств, поведение которых может быть запрограммировано в соответствии с набором некоторых правил, применяемых в соответствии с входными данными и внутренней логикой действий. Необходимость в системах искусственного интеллекта была обусловлена появлением в 40–50-х годах XX века задач, которые было трудно или невозможно решить человеку, но которые были вполне под силу электронным устройствам того времени: расшифровка секретных сообщений противника, планирование военных операций и т. п. Дальнейшее развитие искусственного интеллекта получило теоретическую базу в виде фундаментальных работ А. Тьюринга, К. Шеннона, Дж. Маккарти, Ф. Розенблатта и других исследователей, в которых были сформулированы основные положения теории алгоритмов, машинного обучения, теории информации, искусственных нейронных сетей, языков программирования.
Машинное обучение на основе примеров предполагает, что имеющиеся данные содержат скрытые закономерности, обнаружение и анализ которых позволяет строить прогнозы и принимать решения. В машинном обучении широко используется аппарат теории вероятностей и математической статистики, байесовский вывод, понятие марковских цепей. Одной из основных технологий обучения являются искусственные нейронные сети, моделирующие функционирование биологических нейронов при обработке поступающих на них сигналов.
При разработке алгоритмов прогноза ночной гипогликемии с помощью технологий машинного обучения необходимо решить ряд вопросов. Первый касается выбора горизонта прогнозирования. Какое время до возникновения эпизода можно считать оптимальным для прогноза — иными словами, за какое время до события алгоритм должен дать надежный прогноз? Алгоритмы машинного обучения, «натренированные» на данных непрерывного мониторинга глюкозы, позволяют прогнозировать гипогликемию в ближайшем будущем. Очевидно, что в случае с ночной гипогликемией алгоритм не должен срабатывать слишком рано, иначе это будет приводить к нарушению качества сна. С другой стороны, пациент или окружающие должны иметь достаточно времени, чтобы принять меры по профилактике гипогликемии. К счастью, в большинстве случаев эту опасную ситуацию можно предотвратить приемом углеводистой пищи. Большинство исследователей считают, что горизонт в 15–60 минут вполне приемлем для прогноза. Исследовательской группой новосибирских ученых (д.т.н. В. Б. Бериков и др.) были созданы модели прогнозирования ночной гипогликемии у больных сахарным диабетом 1 типа с горизонтом прогнозирования 15 и 30 минут.
При разработке алгоритма пришлось столкнуться с проблемой несбалансированности выборки. Дело в том, что гипогликемия развивается далеко не у каждого пациента и не каждую ночь. Поэтому число записей с гипогликемией составляет незначительную долю от общего объема наблюдений. В силу этого получаемые прогнозные решения могут страдать от эффекта переобучения, быть неустойчивы и претерпевать сильные изменения при добавлении или исключении некоторых наблюдений. Для преодоления указанной трудности в рамках проекта был разработан подход, основанный на методах сэмплинга как искусственного обогащения миноритарного класса (oversampling) или, наоборот, уменьшения доли мажоритарного класса (undersampling) с учетом специфики рассматриваемых рядов непрерывного мониторинга глюкозы.
Какие алгоритмы машинного обучения способны дать наиболее точный прогноз? Был исследован ряд методов для построения модели прогнозирования, включая линейную регрессию с регуляризацией, алгоритм деревьев решений (random forest) и искусственные нейронные сети. Все три алгоритма «работали» с данными непрерывного мониторинга уровня глюкозы, полученными во время госпитализации. Основой прогноза при этом являлись различные математические характеристики рядов значений глюкозы перед возникновением гипогликемии.
Как и следовало ожидать, наиболее трудной задачей было прогнозирование ночной гипогликемии с наибольшим горизонтом прогноза (30 минут). Однако и в этом случае метрики качества прогноза на тестовых выборках оказались вполне приемлемыми — в среднем чувствительность и специфичность составили более 87%. Наиболее точный прогноз давал алгоритм деревьев решений.
Исследователи попытались повысить качество прогноза за счет клинических характеристик пациентов. Для этого данные мониторинга глюкозы были дополнены информацией о поле, возрасте, индексе массы тела, длительности сахарного диабета, наличии осложнений и сопутствующих заболеваний, виде применяемого инсулина, лабораторными данными. Оказалось, что включение в модели дополнительных клинических параметров способно улучшить качество прогноза в пределах 1–2%.
Разработанный алгоритм может в дальнейшем использоваться во время непрерывного мониторинга уровня глюкозы, например, в качестве мобильного приложения. Многочисленные приложения для мобильных устройств становятся все более популярной опцией в контроле сахарного диабета. Применение алгоритмов, способных заблаговременно распознать динамику уровня глюкозы, чреватую большим риском гипогликемии, должно способствовать более эффективному и безопасному лечению этого заболевания.