Специалисты РХТУ им. Д.И. Менделеева разрабатывают новый способ восстановления тканей печени, поврежденной в результате цирроза. Метод предполагает удаление в ходе операции больной части органа и установку на ее место специального клеточного каркаса, который стимулирует регенерацию собственной ткани организма. Основу матрицы, которая должна обрасти клетками, составит специальный пористый материал — аэрогель. Его получают из биополимеров. Каждый имплантат будут печатать на 3D-принтере индивидуально под конкретного пациента. Затем его напитают антибиотиками, подавляющими воспалительные процессы, и стволовыми клетками больного, которые ускорят процесс выздоровление. Проект получил поддержку Российского научного фонда.
«Мы работаем над технологией создания тканеинженерных конструкций из биосовместимого материала в виде конкретного участка печени с индивидуальной геометрией. Сейчас мы экспериментируем с материалами, которые могут для этого использоваться. Это, например, различные биополимеры, которые не препятствуют прорастанию собственной ткани пациента. Возможно даже использование межклеточных матриксов самого больного», — рассказал доцент кафедры химического и фармацевтического инжиниринга РХТУ им. Д.И. Менделеева Павел Цыганков.
Частицы аэрогеля. Источник: РХТУ им. Менделеева
Ученые уже испытали свойства своего аэрогеля на животных. Для этого материал ввели под кожу лабораторным крысам. Эксперименты показали, что он не токсичен, не вызывает отторжений и полностью безопасен для живых организмов. Для внедрения метода в медицинскую практику понадобится несколько лет. Для этого разработчикам предстоит пройти полный цикл доклинических и клинических исследований. На первом этапе специалисты будут испытывать свойства имплантатов размером до 2 куб. см.
«Материал, который мы будем использовать для печати имплантатов, должен иметь определенную вязкость и текучесть. Для этого мы подбираем различные составы исходного раствора. Добиваемся, например, проявления тиксотропных свойств, как у кетчупа. Когда его выдавливают, он течет, а когда он уже на тарелке, он держит свою форму. Так и у материалов для 3D-печати. Тиксотропные свойства обеспечивают беспрепятственное продавливание. После того как структура будет напечатана, вязкость восстанавливается — и 3D-объект сохранит заданную форму», — сказал Павел Цыганков.
Источник: Getty Images/choja
Обычно для того, чтобы обеззаразить медицинское изделие, используются химические, радиационные воздействия или высокие температуры. Однако биополимеры слишком чувствительны к такой обработке. Вместо нее ученые предлагают использовать сверхкритический диоксид углерода (среднее состояние вещества между газом и жидкостью). В таком состоянии вещество обладает высокой растворяющей способностью и хорошо проникает в пористую структуру аэрогеля. Для усиления эффекта в смесь добавляют малые количества надуксусной кислоты, что позволяет обеспечить высокий уровень стерильности.
Частицы аэрогеля. Источник: РХТУ им. Менделеева
Аэрогели — уникальные материалы, которые иногда называют твердым газом, рассказал «Известиям» научный руководитель РХТУ им. Д.И. Менделеева Александр Мажуга. Его уникальность состоит в очень низкой плотности и теплопроводности, так как это высокопористый материал, заполненный газом. Одно из применений аэрогелей — создание кровоостанавливающих материалов в виде специальных аппликаторов, бинтов, повязок. В качестве основы при создании аэрогеля используют биополимер хитозан, уточнил специалист.
«Часто для терапии цирроза печени используют резекцию. И разработка методов фрагментарного восстановления печени крайне актуальна. Аэрогель как уникальный материал, обладающий высокой пористостью, — идеальный каркас, который воссоздает необходимый фрагмент органа. Пористость материала делает эту технологию универсальной, позволяющей «заселить» его необходимым типом клеток», — отметил Александр Мажуга.
«Вопреки достижениям современной медицины некоторые заболевания печени остаются неизлечимыми, а единственное спасение — пересадка печени. Разработка и создание искусственных частей органов, в частности печени, — это перспективное направление в биомедицине, поскольку позволит минимизировать риски, связанные с трансплантацией органа, сократить время ожидания операции и ускорит восстановление пациента», — считает инженер НОЦ биомедицинской инженерии Университета МИСИС Анна Зимина.
«После того как пройдут исследования на людях и будут положительные результаты, тогда уже действительно можно говорить, что этот метод перспективен. Однако при проведении исследований на людях могут возникнуть свои подводные камни», — сказал врач-терапевт, гастроэнтеролог-гепатолог Петр Ткаченко.