КАРТОЧКА ПРОЕКТА ФУНДАМЕНТАЛЬНЫХ И ПОИСКОВЫХ НАУЧНЫХ ИССЛЕДОВАНИЙ,
ПОДДЕРЖАННОГО РОССИЙСКИМ НАУЧНЫМ ФОНДОМ
Информация подготовлена на основании данных из Информационно-аналитической системы РНФ, содержательная часть представлена в авторской редакции. Все права принадлежат авторам, использование или перепечатка материалов допустима только с предварительного согласия авторов.
ОБЩИЕ СВЕДЕНИЯ
Номер проекта 23-21-00262
НазваниеСвязанная термомеханика микрополярных полуизотропных сред
Руководитель Радаев Юрий Николаевич, Доктор физико-математических наук
Организация финансирования, регион Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук , г Москва
Конкурс №78 - Конкурс 2022 года «Проведение фундаментальных научных исследований и поисковых научных исследований малыми отдельными научными группами»
Область знания, основной код классификатора 01 - Математика, информатика и науки о системах; 01-301 - Теория упругости, сопряженные модели
Ключевые слова микрополярный, термоупругий, поляризация, полуизотропный, псевдотензор, термодинамический потенциал, зеркальная мода, определяющий псевдоскаляр, термомеханическая связность, микроструктурная чувствительность к зеркальным отражениям
Код ГРНТИ30.19.00
ИНФОРМАЦИЯ ИЗ ЗАЯВКИ
Аннотация
Современные конструкционные метаматериалы и биоматериалы обладают такими термомеханическими свойствами, о существовании которых нельзя было даже подозревать еще несколько десятилетий назад: отрицательный коэффициент Пуассона (ауксетические материалы), отрицательное тепловое расширение, отрицательная электрическая и магнитная проницаемость. Многие метаматериалы являются композитными материалами. Метаматериал демонстрирует характеристики отклика, которые либо не наблюдаются, либо усиливаются по сравнению с индивидуальными откликами составляющих его материалов. Сотовые конструкции, являются системами из хорошо известных конструкционных элементов, в целом могут проявлять нестандартное поведение на механические воздействия.
Практическая значимость исследований этой области механики континуума связана с моделированием поведения биоматериалов, используемых в трансплантологии. Биологические ткани животного происхождения (мышечная ткань, длинные кости, стенки кровеносных сосудов) проявляют полуизотропные микрополярные свойства, что подтверждается многочисленными исследованиями. Поэтому, при математическом моделировании процессов деформирования и формообразования таких материалов необходимо понимать, что классические модели механики сплошных сред накладывают чрезмерные ограничения. При построении таких моделей важно соблюдать термодинамическую и геометрическую непротиворечивость. Термомеханические свойства материалов, проявляющих полуизотропные свойства и микроструктурную чувствительность к зеркальным отражениям микроструктурного состояния термоупругого тела, т.е. определяющие тензоры на самом деле удобнее заменить псевдотензорами, в закон преобразования которых явно входит чувствительный к зеркально-симметричных преобразованиям трехмерного пространства фундаментальный ориентирующий псевдоскаляр. В таких случаях полезными оказываются микрополярные модели континуума. Последовательное применение термодинамического подхода и алгебры псевдотензоров в механике микрополярного континуума приводит к физически и геометрически корректным формулировкам определяющих уравнений, по большому счету самой модели.
Основными целями проекта выступают разработка связанных моделей полуизотропных микрополярных термоупругих континуумов, вывод и исследование систем дифференциальных уравнений термомеханики и их решений, соответствующих изотермическим и адиабатическим процессам. Построение математических моделей полуизотропных континуумов будет проводится в рамках псевдотензорных формулировок с использованием термодинамического подхода. Системы связанных и несвязанных уравнений термомеханики полуизотропного микрополярного континуума будут исследованы с использованием метод псевдовекторных винтовых потенциалов. Речь идет о распространении связанных гармонических волн температуры, перемещений и микровращений в ограниченных микрополярных термоупругих средах, расчете их скоростей и пространственных прямых и зеркальных поляризаций.
ОТЧЁТНЫЕ МАТЕРИАЛЫ
Публикации
1.
Мурашкин Е.В., Радаев Ю.Н.
A Negative Weight Pseudotensor Formulation of Coupled Hemitropic Thermoelasticity
Lobachevskii Journal of Mathematics, Vol. 44, Iss. 6, P. 2440–2449 (год публикации - 2023)
10.1134/S1995080223060392
2.
Мурашкин Е.В., Радаев Ю.Н.
Coupled Thermoelasticity of Hemitropic Media. Pseudotensor Formulation
Mechanics of Solids, Vol. 58, No. 3, pp. 802–813. (год публикации - 2023)
10.3103/S0025654423700127
3.
Радаев Ю.Н.
Tensors with Constant Components in the Constitutive Equations of a Hemitropic Micropolar Solids
Mechanics of Solids, Vol. 58, No. 5, pp. 1517–1527 (год публикации - 2023)
10.3103/S0025654423700206
4.
Мурашкин Е.В.
О связи микрополярных определяющих параметров термодинамических потенциалов состояния
Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, №1 (55). С. 110–121 (год публикации - 2023)
10.37972/chgpu.2023.55.1.012
5.
Мурашкин Е.В., Радаев Ю.Н.
Heat Transfer in Anisotropic Micropolar Solids
Mechanics of Solids, Vol. 58, No. 9 (год публикации - 2023)
10.3103/S0025654423700255
6.
Мурашкин Е.В., Нестеров Т.К., Стадник Н.Э.
Условия совместности в моделях полуизотропных термоупругих тел
Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, №1 (55). С. 102–109 (год публикации - 2023)
10.37972/chgpu.2023.55.1.011
7.
Мурашкин Е.В., Радаев Ю.Н.
Волновые числа связанной плоской термоупругой волны в ультраизотропной среде
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 3(61). C. 128-139. (год публикации - 2024)
10.37972/chgpu.2024.61.3.009
8. Мурашкин Е. В. Условия атермичности продольных волн для полуизотропных термоупругих микрополярных сред Ученые записки Комсомольского-на-Амуре государственного технического университета, № VII-1(79) (год публикации - 2024)
9.
Мурашкин Е.В., Радаев Ю.Н.
Волновые числа гармонических плоских волн трансляционных и спинорных перемещений в полуизотропной термоупругой среде
Вестник Самарского государственного технического университета. Серия «Физико-математические науки», Т. 28, № 3, С. 445-461 (год публикации - 2024)
10.14498/vsgtu2087
10.
Мурашкин Е.В., Радаев Ю.Н.
Theory of Poisson’s ratio for a thermoelastic micropolar acentric isotropic solid
Lobachevskii Journal of Mathematics, Vol. 45, No. 5, pp. 2378–2390. (год публикации - 2024)
10.1134/S1995080224602480
11.
Мурашкин Е.В., Радаев Ю.Н.
Теплопроводность микрополярных тел, чувствительных к зеркальным отражениям пространства
Ученые записки Казанского университета. Серия Физико-математические науки, T. 165, кн. 4. С. 389-403 (год публикации - 2023)
10.26907/2541-7746.2023.4.389-403
12.
Нестеров Т.К.
Плоские монохроматические связанные волны перемещений и микровращений в линейном полуизотропном микрополярном теле
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, № 1(59). C.115-129 (год публикации - 2024)
10.37972/chgpu.2024.59.1.008
13.
Мурашкин Е.В., Радаев Ю.Н.
On Algebraic Triple Weights Formulation of Micropolar Thermoelasticity
Mechanics of Solids, Vol. 59, No. 1, pp. 555-580 (год публикации - 2024)
10.1134/S0025654424700274
14.
Мурашкин Е.В., Радаев Ю.Н.
К поливариантности основных уравнений связанной термоупругости микрополярного тела
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 3(57). C.112-128 (год публикации - 2023)
10.37972/chgpu.2023.57.3.010
15. Мурашкин Е.В., Радаев Ю.Н. Волны трансляционных и спинорных перемещений в термоупругом полуизотропном волноводе Материалы XV Международной конференции по прикладной математике и механике в аэрокосмической отрасли (AMMAI’2024), 1–8 сентября 2024 г., Алушта. М.: МАИ. , С. 57-59 (год публикации - 2024)
16. Мурашкин Е.В., Радаев Ю.Н. Plane Thermoelastic Waves in Ultrahemitropic Micropolar Solid Mechanics of Solids, Vol. 59, No. 4 (год публикации - 2024)
17.
Мурашкин Е.В., Стадник Н.Э.
Мультивесовая теория слабых разрывов, распространяющихся в полуизотропной термоупругой микрополярной среде
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, № 2(60) С. 87-106. (год публикации - 2024)
10.37972/chgpu.2024.60.2.007
18.
Мурашкин Е.В., Радаев Ю.Н.
Characteristic Constitutive Numbers in Semi-Isotropic Coupled Thermoelasticity
Mechanics of Solids, Vol. 59, No. 4, pp. 1856-1867 (год публикации - 2024)
10.1134/S0025654424700298
19.
Мурашкин Е.В., Радаев Ю.Н.
Coupled Harmonic Plane Waves in a Semi-Isotropic Thermoelastic Medium
Mechanics of Solids, Vol. 59, No. 4, P. 2387-2394 (год публикации - 2024)
10.1134/S0025654424700316
20.
Мурашкин Е.В., Радаев Ю.Н.
Мультивесовая термомеханика гемитропных микрополярных тел
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 4(58). C.86-120 (год публикации - 2023)
10.37972/chgpu.2023.58.4.010
21.
Мурашкин Е.В., Радаев Ю.Н.
Плоские гармонические термоупругие волны в ультрагемитропном микрополярном теле
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 2(60). С.116-128 (год публикации - 2024)
10.37972/chgpu.2024.60.2.008
22. Мурашкин Е.В., Радаев Ю.Н. Об оценках кривизны материальных волокон при асимметричной деформации микрополярного упругого тела в терминах определяющей микродлины Материалы XII Всероссийской научной конференции с межународным участием "Математическое моделирование и краевые задачи" (17-19 сентября 2024г., Самара, Россия): в 2-х томах. Самара: СамГТУ., Т. 2. С. 26-28 (год публикации - 2024)
23. Мурашкин Е.В., Радаев Ю.Н. Винтовые потенциалы гармонических волн в полуизотропных микрополярных средах X Поляховские чтения : Материалы международной научной конференции по механике, 23–27 сентября 2024 г., Санкт–Петербург, Россия. СПб.: ООО "Издательство ВВМ", С. 550-553. (год публикации - 2024)
24. Мурашкин Е.В., Радаев Ю.Н. Polarization Vectors of Plane Waves in Semi-Isotropic Thermoelastic Micropolar Solids Mechanics of Solids, Vol. 59, No. 7 (год публикации - 2024)
25. Мурашкин Е.В., Радаев Ю.Н. Wavenumbers of Doublet and Triplet Plane Thermoelastic Wave in Ultraisotropic Micropolar Medium Mechanics of Solids, Vol. 59, No. 6 (год публикации - 2024)
Аннотация результатов, полученных в 2024 году
За отчетный период 2024 г. были получены следующие результаты. Полученные на предыдущем этапе выполнения проекта результаты были существенно обобщены, что в конце концов позволило получить мультивесовую формулировку (triple weight formulation) уравнений динамики и уравнения теплопроводности для гемитропного микрополярного термоупругого тела, основанную на абсолютной ивариантности трансляционных перемещений и следующих объектов, относимых к единице массы: массы, массовые силы, механической работы, количества тепла. С точки зрения масштабных факторов удалось проанализировать порядки членов и слагаемые с доминирующими производными в дифференциальных уравнениях связанной микрополярной термоупругости. С помощью характерной длины микрополярной термоупругости получена оценка расходимости скоростей микроповоротов и оценка сверху кривизны микроволокон микрополярного тела в результате их асимметричной деформации, в т.ч. деформации изгиба-кручения.
Исследованы процессы распространения связанных плоских термических и атермических гармонических волн температуры, трансляционных и спинорных перемещений. Получена общая мультивесовая форма псевдотензорного соотношения на волновой поверхности, распространяющейся в полуизотропной термоупругой микрополярной среде. Изучены и классифицированы слабые разрывы (разрывы вторых производных физических полей, когда первые производные и сами физические поля остаются непрерывными) полей температуры, трансляционных и спинорных перемещений на распространяющихся волновых поверхностях в полуизотропном микрополярном термоупругом континууме (GNI по классификации Грина-Нахди). Получено и исследовано характеристическое уравнение для слабых разрывов. Вычислены скорости вдоль нормали, распространяющейся поверхности слабых разрывов полей температуры, трансляционных и спинорных перемещений. Исследованы поляризации (пространственные ориентации) скачков вторых производных указанных физических полей. Изучены возможные соотношения между амплитудными факторами слабого разрыва температурного поля и векторов-разрывов трансляционных и спинорных перемещений.
Исследованы процессы распространения монохроматических плоских волн заданной частоты. Установлена коллинеарность волнового вектора и вектора нормали к распространяющейся поверхности монохроматической волны. Вычислен угол, образованный комплексными амплитудными векторами в фазовой плоскости. Исследовано возможное существование зеркально симметричных мод, что наиболее просто реализуется в случае равенства единице детерминанта метрического тензора. Выведены и изучены детерминантные (частотные) уравнения для определения волновых чисел (длин волнового вектора) из условия равенства нулю детерминанта системы линейных уравнений. Проведено сведение детерминантных уравнений к алгебраическим уравнениям. В случае продольных триплетных волн детерминантное (дисперсионное) уравнение сводится к бикубическому, а для случая почеречных дублетных волн оно сводится к уравнению восьмой степени. Исследованы возможные связи между амплитудами полей температуры, трансляционных и спинорных перемещений. Указаны условия атермичности, распространяющихся гармонических волн. Исследован случай распространения атермической (холодной) связанной монохроматической плоской волны.
Исследован процесс распространения гармонических возмущений вдоль оси свободного бесконечно длинного теплоизолированного цилиндрического волновода. Система связанных псевдовекторных динамических уравнений и уравнение теплопроводности полуизотропного микрополяного термоупругого тела преобразованы к форме в абсолютных тензорах в цилиндрической системе координат. Проведено обезразмеривание системы дифференциальных уравнений и указан перечень характерных безразмерных чисел, свойственных решаемой задаче. Выполнено разложение полей трансляционных и спинорных перемещений на вихревые и безвихревые составляющие с учетом условий их калибровки. Получены и исследованы представления абсолютных векторных полей трансляционных и спинорных перемещений с помощью системы винтовых векторных потенциалов, обеспечивающих выполнимость связанных векторных дифференциальных уравнений в частных производных. Исследована взаимная связанность процессов теплообмена и деформирования, определяемая системой, состоящей из уравнения теплопроводности и уравнений в частных производных для скалярных потенциалов полей температуры, трансляционных и спинорных перемещений. Процедура устранения связанности векторных динамических уравнений для вихревых векторных потенциалов проведена методом введения в рассмотрение фундаментального универсального вихревого потенциала, совпадающего с векторными потенциалами полей трансляционных и спинорных перемещений с точностью до скалярных множителей. Несвязанные винтовые уравнения для универсального вихревого потенциала в цилиндрической области исследованы стандартной схемой решения уравнений в частных производных: методом разделения переменных с выделением гармонической волны заданного азимута. Выделение гармонической волны заданного азимута обеспечивается структурой аналитического решения задачи, т.е. наличием соответствующих множителей в виде окружных гармоник.
Публикации
1.
Мурашкин Е.В., Радаев Ю.Н.
A Negative Weight Pseudotensor Formulation of Coupled Hemitropic Thermoelasticity
Lobachevskii Journal of Mathematics, Vol. 44, Iss. 6, P. 2440–2449 (год публикации - 2023)
10.1134/S1995080223060392
2.
Мурашкин Е.В., Радаев Ю.Н.
Coupled Thermoelasticity of Hemitropic Media. Pseudotensor Formulation
Mechanics of Solids, Vol. 58, No. 3, pp. 802–813. (год публикации - 2023)
10.3103/S0025654423700127
3.
Радаев Ю.Н.
Tensors with Constant Components in the Constitutive Equations of a Hemitropic Micropolar Solids
Mechanics of Solids, Vol. 58, No. 5, pp. 1517–1527 (год публикации - 2023)
10.3103/S0025654423700206
4.
Мурашкин Е.В.
О связи микрополярных определяющих параметров термодинамических потенциалов состояния
Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, №1 (55). С. 110–121 (год публикации - 2023)
10.37972/chgpu.2023.55.1.012
5.
Мурашкин Е.В., Радаев Ю.Н.
Heat Transfer in Anisotropic Micropolar Solids
Mechanics of Solids, Vol. 58, No. 9 (год публикации - 2023)
10.3103/S0025654423700255
6.
Мурашкин Е.В., Нестеров Т.К., Стадник Н.Э.
Условия совместности в моделях полуизотропных термоупругих тел
Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, №1 (55). С. 102–109 (год публикации - 2023)
10.37972/chgpu.2023.55.1.011
7.
Мурашкин Е.В., Радаев Ю.Н.
Волновые числа связанной плоской термоупругой волны в ультраизотропной среде
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 3(61). C. 128-139. (год публикации - 2024)
10.37972/chgpu.2024.61.3.009
8. Мурашкин Е. В. Условия атермичности продольных волн для полуизотропных термоупругих микрополярных сред Ученые записки Комсомольского-на-Амуре государственного технического университета, № VII-1(79) (год публикации - 2024)
9.
Мурашкин Е.В., Радаев Ю.Н.
Волновые числа гармонических плоских волн трансляционных и спинорных перемещений в полуизотропной термоупругой среде
Вестник Самарского государственного технического университета. Серия «Физико-математические науки», Т. 28, № 3, С. 445-461 (год публикации - 2024)
10.14498/vsgtu2087
10.
Мурашкин Е.В., Радаев Ю.Н.
Theory of Poisson’s ratio for a thermoelastic micropolar acentric isotropic solid
Lobachevskii Journal of Mathematics, Vol. 45, No. 5, pp. 2378–2390. (год публикации - 2024)
10.1134/S1995080224602480
11.
Мурашкин Е.В., Радаев Ю.Н.
Теплопроводность микрополярных тел, чувствительных к зеркальным отражениям пространства
Ученые записки Казанского университета. Серия Физико-математические науки, T. 165, кн. 4. С. 389-403 (год публикации - 2023)
10.26907/2541-7746.2023.4.389-403
12.
Нестеров Т.К.
Плоские монохроматические связанные волны перемещений и микровращений в линейном полуизотропном микрополярном теле
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, № 1(59). C.115-129 (год публикации - 2024)
10.37972/chgpu.2024.59.1.008
13.
Мурашкин Е.В., Радаев Ю.Н.
On Algebraic Triple Weights Formulation of Micropolar Thermoelasticity
Mechanics of Solids, Vol. 59, No. 1, pp. 555-580 (год публикации - 2024)
10.1134/S0025654424700274
14.
Мурашкин Е.В., Радаев Ю.Н.
К поливариантности основных уравнений связанной термоупругости микрополярного тела
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 3(57). C.112-128 (год публикации - 2023)
10.37972/chgpu.2023.57.3.010
15. Мурашкин Е.В., Радаев Ю.Н. Волны трансляционных и спинорных перемещений в термоупругом полуизотропном волноводе Материалы XV Международной конференции по прикладной математике и механике в аэрокосмической отрасли (AMMAI’2024), 1–8 сентября 2024 г., Алушта. М.: МАИ. , С. 57-59 (год публикации - 2024)
16. Мурашкин Е.В., Радаев Ю.Н. Plane Thermoelastic Waves in Ultrahemitropic Micropolar Solid Mechanics of Solids, Vol. 59, No. 4 (год публикации - 2024)
17.
Мурашкин Е.В., Стадник Н.Э.
Мультивесовая теория слабых разрывов, распространяющихся в полуизотропной термоупругой микрополярной среде
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, № 2(60) С. 87-106. (год публикации - 2024)
10.37972/chgpu.2024.60.2.007
18.
Мурашкин Е.В., Радаев Ю.Н.
Characteristic Constitutive Numbers in Semi-Isotropic Coupled Thermoelasticity
Mechanics of Solids, Vol. 59, No. 4, pp. 1856-1867 (год публикации - 2024)
10.1134/S0025654424700298
19.
Мурашкин Е.В., Радаев Ю.Н.
Coupled Harmonic Plane Waves in a Semi-Isotropic Thermoelastic Medium
Mechanics of Solids, Vol. 59, No. 4, P. 2387-2394 (год публикации - 2024)
10.1134/S0025654424700316
20.
Мурашкин Е.В., Радаев Ю.Н.
Мультивесовая термомеханика гемитропных микрополярных тел
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 4(58). C.86-120 (год публикации - 2023)
10.37972/chgpu.2023.58.4.010
21.
Мурашкин Е.В., Радаев Ю.Н.
Плоские гармонические термоупругие волны в ультрагемитропном микрополярном теле
Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия механика предельного состояния, № 2(60). С.116-128 (год публикации - 2024)
10.37972/chgpu.2024.60.2.008
22. Мурашкин Е.В., Радаев Ю.Н. Об оценках кривизны материальных волокон при асимметричной деформации микрополярного упругого тела в терминах определяющей микродлины Материалы XII Всероссийской научной конференции с межународным участием "Математическое моделирование и краевые задачи" (17-19 сентября 2024г., Самара, Россия): в 2-х томах. Самара: СамГТУ., Т. 2. С. 26-28 (год публикации - 2024)
23. Мурашкин Е.В., Радаев Ю.Н. Винтовые потенциалы гармонических волн в полуизотропных микрополярных средах X Поляховские чтения : Материалы международной научной конференции по механике, 23–27 сентября 2024 г., Санкт–Петербург, Россия. СПб.: ООО "Издательство ВВМ", С. 550-553. (год публикации - 2024)
24. Мурашкин Е.В., Радаев Ю.Н. Polarization Vectors of Plane Waves in Semi-Isotropic Thermoelastic Micropolar Solids Mechanics of Solids, Vol. 59, No. 7 (год публикации - 2024)
25. Мурашкин Е.В., Радаев Ю.Н. Wavenumbers of Doublet and Triplet Plane Thermoelastic Wave in Ultraisotropic Micropolar Medium Mechanics of Solids, Vol. 59, No. 6 (год публикации - 2024)